Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 107201    DOI: 10.1088/0256-307X/37/10/107201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Giant Spin Transfer Torque in Atomically Thin Magnetic Bilayers
Weihao Cao1,2, Matisse Wei-Yuan Tu1,3*, Jiang Xiao4,5, and Wang Yao1,3*
1Department of Physics, University of Hong Kong, Hong Kong, China
2Department of Physics, University of California San Diego, La Jolla, CA 92093-0319, USA
3HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
4Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
5Institute for Nanoelectronics Devices and Quantum Computing, Fudan University, Shanghai 200433, China
Cite this article:   
Weihao Cao, Matisse Wei-Yuan Tu, Jiang Xiao et al  2020 Chin. Phys. Lett. 37 107201
Download: PDF(1297KB)   PDF(mobile)(1306KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In cavity quantum electrodynamics, the multiple reflections of a photon between two mirrors defining a cavity is exploited to enhance the light-coupling of an intra-cavity atom. We show that this paradigm for enhancing the interaction of a flying particle with a localized object can be generalized to spintronics based on van der Waals 2D magnets. Upon tunneling through a magnetic bilayer, we find that the spin transfer torques per electron incidence can become orders of magnitude larger than $\hbar /2$, made possible by electron's multi-reflection path through the ferromagnetic monolayers as an intermediate of their angular momentum transfer. Over a broad energy range around the tunneling resonances, the damping-like spin transfer torque per electron tunneling features a universal value of $(\hbar/2)\tan (\theta /2)$, depending only on the angle $\theta$ between the magnetizations. These findings expand the scope of magnetization manipulations for high-performance and high-density storage based on van der Waals magnets.
Received: 01 September 2020      Published: 15 September 2020
PACS:  72.25.-b (Spin polarized transport)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  73.40.Gk (Tunneling)  
  73.40.-c (Electronic transport in interface structures)  
Fund: Supported by the Research Grants Council of Hong Kong (Grant Nos. HKU17303518 and C7036-17W), and the University of Hong Kong (Seed Funding for Strategic Interdisciplinary Research).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/107201       OR      http://cpl.iphy.ac.cn/Y2020/V37/I10/107201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Weihao Cao
Matisse Wei-Yuan Tu
Jiang Xiao
and Wang Yao
[1] Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2004 Nat. Mater. 3 868
[2] Kawahara T, Ito K, Takemura R and Ohno H 2012 Microelectron. Reliab. 52 613
[3] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[4] Berger L 1996 Phys. Rev. B 54 9353
[5] Ralpha D C and Stiles M D 2008 J. Magn. Magn. Mater. 320 1190
[6] Brataas A, Kent A D and Ohno H 2012 Nat. Mater. 11 372
[7] Huang B, Clark G, Navarro-Moratalla E, Klein D, Cheng R, Seyler K, Zhong D, Schmidgall E, McGuire M, Cobden D, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[8] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[9] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94
[10] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A, Wu W, Cobden D, Chu J and Xu X 2018 Nat. Mater. 17 778
[11] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
[12] Wang X, Du K, Yang Y, Liu F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q 2016 2D Mater. 3 031009
[13] O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125
[14] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
[15] Geim A K and Grigorieva I V 2013 Nature 499 419
[16] Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W and Xu X 2018 Science 360 1214
[17] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro- Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J and Jarillo-Herrero P 2018 Science 360 1218
[18] Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E and Morpurgo A F 2018 Nat. Commun. 9 2516
[19] Ghazaryan D, Greenaway M T, Wang Z, Guarochico- Moreira V H, Vera-Marun I J, Yin J, Liao Y, Morozov S V, Kristanovski O, Lichtenstein A I, Katsnelson M I, Withers F, Mishchenko A, Eaves L, Geim A K, Novoselov K S and Misra A 2018 Nat. Electron. 1 344
[20] Kim H H, Yang B, Patel T, Sfigakis F, Li C, Tian S, Lei H and Tsen A W 2018 Nano Lett. 18 4885
[21] Jiang S, Shan J and Mak K F 2018 Nat. Mater. 17 406
[22] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P and Xu X 2018 Nat. Nanotechnol. 13 544
[23] Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z and Zhang Z 2018 Nat. Nanotechnol. 13 554
[24] Manchon A, Ryzhanova N, Vedyayev A, Chschiev M and Dieny B 2008 J. Phys.: Condens. Matter 20 145208
[25] Xiao J, Bauer G E W and Brataas A 2008 Phys. Rev. B 77 224419
[26] Theodonis I, Kioussis N, Kalitsov A, Chshiev M and Butler W H 2006 Phys. Rev. Lett. 97 237205
[27] Heiliger C and Stiles M D 2008 Phys. Rev. Lett. 100 186805
[28] Cai X, Song T, Wilson N P, Clark G, He M, Zhang X, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H and Xu X 2019 Nano Lett. 19 3993
[29] Klein D R, MacNeill D, Song Q, Larson D T, Fang S, Xu M, Ribeiro R A, Canfield P C, Kaxiras E, Comin R and Jarillo-Herrero P 2019 Nat. Phys. 15 1255
[30] Kim H H, Yang B, Li S, Jiang S, Jin C, Tao Z, Nichols G, Sfigakis F, Zhong S, Li C, Tian S, Cory D G, Miao G X, Shan J, Mak K F, Lei H, Sun K, Zhao L and Tsen A W 2019 Proc. Natl. Acad. Sci. USA 116 11131
[31] Sharma A, Tulapurkar A A and Muralidharan B 2018 Appl. Phys. Lett. 112 192404
[32] Chatterji N, Tulapurkar A A and Muralidharan B 2014 Appl. Phys. Lett. 105 232410
Related articles from Frontiers Journals
[1] Chao Yang, Zheng-Chuan Wang, and Gang Su. Magnetization Reversal of Single-Molecular Magnets by a Spin-Polarized Current[J]. Chin. Phys. Lett., 2020, 37(8): 107201
[2] He-Nan Fang, Yuan-Yuan Zhong, Ming-Wen Xiao, Xuan Zang, Zhi-Kuo Tao. Effect of Lattice Distortion on the Magnetic Tunnel Junctions Consisting of Periodic Grating Barrier and Half-Metallic Electrodes[J]. Chin. Phys. Lett., 2020, 37(3): 107201
[3] Xiao-Xue Zhang, Yao-Hui Zhu, Pei-Song He, Bao-He Li. Mechanisms of Spin-Dependent Heat Generation in Spin Valves[J]. Chin. Phys. Lett., 2017, 34(6): 107201
[4] Feng Chi, Lian-Liang Sun. Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2016, 33(11): 107201
[5] NIU Peng-Bin, SHI Yun-Long, SUN Zhu, NIE Yi-Hang, LUO Hong-Gang. Phonon-Assisted Spin Current in Single Molecular Magnet Junctions[J]. Chin. Phys. Lett., 2015, 32(11): 107201
[6] ZHANG Xiao-Wei, ZHAO Hua, SANG Tian, LIU Xiao-Chun, CAI Tuo. Spin-Dependent Electron Transport in an Armchair Graphene Nanoribbon Subject to Charge and Spin Biases [J]. Chin. Phys. Lett., 2013, 30(1): 107201
[7] A. John Peter, Chang Woo Lee. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure[J]. Chin. Phys. Lett., 2012, 29(11): 107201
[8] LI Bo-Xin, ZHENG Jun, CHI Feng. Spin-Selective Transport of Electron in a Quantum Dot under Magnetic Field[J]. Chin. Phys. Lett., 2012, 29(10): 107201
[9] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 107201
[10] LI Jin-Liang, LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction[J]. Chin. Phys. Lett., 2010, 27(5): 107201
[11] Eerdunchaolu, XIN Wei, ZHAO Yu-Wei. Influence of Rashba SOI and Polaronic Effects on the Ground-State Energy of Electrons in Semiconductor Quantum Rings[J]. Chin. Phys. Lett., 2010, 27(1): 107201
[12] CHI Feng, YUAN Xi-Qiu. Triple Quantum Dot Molecule as a Spin-Splitter[J]. Chin. Phys. Lett., 2009, 26(9): 107201
[13] TANG Xiao-Li, ZHANG Huai-Wu, SU Hua, JING Yu-Lan. Large Magnetoresistance Based on Double Spin Filter Tunnel Barriers[J]. Chin. Phys. Lett., 2008, 25(10): 107201
[14] LI Yu-Xian. Spin Polarization and Andreev Conductance through a Diluted Magnetic Semiconductor Quantum Wire with Spin--Orbit Interaction[J]. Chin. Phys. Lett., 2008, 25(10): 107201
[15] FANG Ming, SUN Lian-Liang. Spin Filter Based on an Aharonov--Bohm Interferometer with Rashba Spin--Orbit Effect[J]. Chin. Phys. Lett., 2008, 25(9): 107201
Viewed
Full text


Abstract