Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 100501    DOI: 10.1088/0256-307X/37/10/100501
GENERAL |
Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules
Wei Wang1,2, Ruoxia Yao1*, and Senyue Lou3
1School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
2Information and Education Technology Center, Xi'an University of Finance and Economics, Xi'an 710062, China
3School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Cite this article:   
Wei Wang, Ruoxia Yao, and Senyue Lou 2020 Chin. Phys. Lett. 37 100501
Download: PDF(3095KB)   PDF(mobile)(3086KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Traveling wave solutions have been well studied for various nonlinear systems. However, for high order nonlinear physical models, there still exist various open problems. Here, travelling wave solutions to the well-known fifth-order nonlinear physical model, the Sawada–Kotera equation, are revisited. Abundant travelling wave structures including soliton molecules, soliton lattice, kink-antikink molecules, peak-plateau soliton molecules, few-cycle-pulse solitons, double-peaked and triple-peaked solitons are unearthed.
Received: 24 June 2020      Published: 29 September 2020
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Sb (Solitons; BGK modes)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11975131, 11435005 and 11471004), and K. C. Wong Magna Fund in Ningbo University.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/100501       OR      http://cpl.iphy.ac.cn/Y2020/V37/I10/100501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Wang
Ruoxia Yao
and Senyue Lou
[1] Ye L J and Lin J 2004 Commun. Theor. Phys. 41 481
[2] Bilge A H 1996 J. Phys. A 29 4967
[3] Fokas A S and Liu Q M 1996 Phys. Rev. Lett. 77 2347
[4] Lamb K 1996 J. Phys. Oceanogr. 26 2712
[5] Grimshaw R, Pelinovsky E and Poloukhina O 2002 Nonlinear Processes Geophys. 9 221
[6] Karczewska A, Rozmej P and Infeld E 2014 Phys. Rev. E 90 012907
[7] Kodama Y 1985 Phys. Lett. A 107 245
[8]Caudrey P J, Dodd R K and Gibbon J D 1976 Proc. R. Soc. A 351 407
[9] Sawada K and Kotera T 1974 Prog. Theor. Phys. 51 1355
[10] Fuchssteiner B and Oevel W 1982 J. Math. Phys. 23 358
[11] Satsuma J and Kaup D J 1977 J. Phys. Soc. Jpn. 43 692
[12] Ito M 1980 J. Phys. Soc. Jpn. 49 771
[13] Hirota R and Ito M 1981 J. Phys. Soc. Jpn. 50 338
[14] Rogers C, Schief W K and Stallybrass M P 1995 Int. J. Non-Linear Mech. 30 223
[15] Leble S B and Ustinov N V 1994 Inverse Probl. 10 617
[16] Tsujimoto S and Hirota R 1996 J. Phys. Soc. Jpn. 65 2797
[17] Zhang Z, Yang X Y and Li B 2020 Appl. Math. Lett. 103 106168
[18] Dong J J, Li B and Yuen M W 2020 Commun. Theor. Phys. 72 025002
[19] Mao H, Liu Q P and Xue L L 2018 J. Nonlinear Math. Phys. 25 375
[20] Zhang Z, Yang S X and Li B 2020 Chin. Phys. Lett. 36 120501
[21] Lou S Y 1993 Phys. Lett. A 175 23
[22] Lou S Y, Ruan H Y, Chen W Z, Wang Z L and Chen L L 1994 Chin. Phys. Lett. 11 593
[23] Zhao Q L, Jia M and Lou S Y 2019 Commun. Theor. Phys. 71 1149
[24] Stratmann M, Pagel T and Mitschke F 2005 Phys. Rev. Lett. 95 143902
[25] Herink G, Kurtz F, Jalali B, Solli D R and Ropers C 2017 Science 356 50
[26] Krupa K, Nithyanandan K, Andral U, Tchofo-Dinda P and Grelu P 2017 Phys. Rev. Lett. 118 243901
[27] Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
[28] Wu Y H, Liu C, Yang Z Y and Yang W L 2020 Chin. Phys. Lett. 37 040501
[29] Lakomy K, Nath R and Santos L 2012 Phys. Rev. A 86 013610
[30] Lou S Y 2020 J. Phys. Commun. 4 041002
[31] Cui C J, Tang X Y and Cui Y J 2020 Appl. Math. Lett. 102 106109
[32] Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese)
[33] Yan Z W and Lou S Y 2020 Appl. Math. Lett. 104 106271
[34] Zhou Y and Ma W X 2017 J. Math. Phys. 58 101511
[35] Leblond H and Mihalache D 2013 Phys. Rep. 523 61
[36] Leblond H and Mihalache D 2009 Phys. Rev. A 79 063835
[37] Bugay A N and Sazonov S V 2004 J. Opt. B: Quantum Semiclass. Opt. 6 328
[38] Sun Y Y and Wu H 2013 Phys. Scr. 88 065001
[39] Lind A J, Kowligy A, Timmers H, Cruz F C, Nader N, Silfies M C, Allison T K and Diddams S A 2020 Phys. Rev. Lett. 124 133904
[40] Jin X W and Lin J 2020 J. Magn. Magn. Mater. 502 166590
Related articles from Frontiers Journals
[1] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 100501
[2] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 100501
[3] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 100501
[4] Ying Yang, Ze-Hua Tian, Ji-Liang Jing. Analogue Soliton with Variable Mass in Super-Conducting Quantum Interference Devices[J]. Chin. Phys. Lett., 2020, 37(4): 100501
[5] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 100501
[6] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schrödinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 100501
[7] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 100501
[8] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 100501
[9] Xin Li, Wen-Hao Xu, Dong-Ming Chen, Li-Ke Cao, Zhan-Ying Yang. Formation of Square-Shaped Waves in the Biscay Bay[J]. Chin. Phys. Lett., 2019, 36(9): 100501
[10] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 100501
[11] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 100501
[12] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schrödinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 100501
[13] Ya-Hong Hu, Jun-Chao Chen. Solutions to Nonlocal Integrable Discrete Nonlinear Schrödinger Equations via Reduction[J]. Chin. Phys. Lett., 2018, 35(11): 100501
[14] Jun Yang, Zuo-Nong Zhu. Higher-Order Rogue Wave Solutions to a Spatial Discrete Hirota Equation[J]. Chin. Phys. Lett., 2018, 35(9): 100501
[15] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 100501
Viewed
Full text


Abstract