Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 100301    DOI: 10.1088/0256-307X/37/10/100301
Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops
Peiran Yin1,2,3, Xiaohui Luo4, Liang Zhang1,2,3, Shaochun Lin1,2,3, Tian Tian1,2,3, Rui Li1,2,3, Zizhe Wang1,2,3, Changkui Duan1,2,3, Pu Huang4*, and Jiangfeng Du1,2,3*
1Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
2CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
4National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Cite this article:   
Peiran Yin, Xiaohui Luo, Liang Zhang et al  2020 Chin. Phys. Lett. 37 100301
Download: PDF(4741KB)   PDF(mobile)(4732KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Physical systems with gain and loss can be described by a non-Hermitian Hamiltonian, which is degenerated at the exceptional points (EPs). Many new and unexpected features have been explored in the non-Hermitian systems with a great deal of recent interest. One of the most fascinating features is that chiral state conversion appears when one EP is encircled dynamically. Here, we propose an easy-controllable levitated microparticle system that carries a pair of EPs and realize slow evolution of the Hamiltonian along loops in the parameter plane. Utilizing the controllable rotation angle, gain and loss coefficients, we can control the structure, size and location of the loops in situ. We demonstrate that, under the joint action of topological structure of energy surfaces and nonadiabatic transitions, the chiral behavior emerges both along a loop encircling an EP and even along a straight path away from the EP. This work broadens the range of parameter space for the chiral state conversion, and proposes a useful platform to explore the interesting properties of exceptional points physics.
Received: 04 June 2020      Published: 29 September 2020
PACS:  03.65.-w (Quantum mechanics)  
  84.71.Ba (Superconducting magnets; magnetic levitation devices)  
  45.80.+r (Control of mechanical systems)  
  11.30.Er (Charge conjugation, parity, time reversal, and other discrete symmetries)  
Fund: Supported by the Fundamental Research Funds for the Central Universities (Grant No. WK2030000032), the National Key R&D Program of China (Grant No. 2018YFA0306600), the CAS (Grant Nos. GJJSTD20170001 and QYZDY-SSW-SLH004), and Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Peiran Yin
Xiaohui Luo
Liang Zhang
Shaochun Lin
Tian Tian
Rui Li
Zizhe Wang
Changkui Duan
Pu Huang
and Jiangfeng Du
[1] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11
[2] Miri M A and Alù A 2019 Science 363 eaar7709
[3] Özdemir Ş K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783
[4] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[5] Bender C M 2007 Rep. Prog. Phys. 70 947
[6] Rotter I 2009 J. Phys. A 42 153001
[7] Heiss W D 2012 J. Phys. A 45 444016
[8] Heiss W D and Steeb W H 1991 J. Math. Phys. 32 3003
[9] Heiss W D 2000 Phys. Rev. E 61 929
[10] Jing H, Özdemir Ş K, Geng Z, Zhang J, Lü X Y, Peng B, Yang L and Nori F 2015 Sci. Rep. 5 9663
[11] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[12] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108
[13] Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975
[14] Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972
[15] Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D and Soljačić M 2015 Nature 525 354
[16] Wiersig J 2014 Phys. Rev. Lett. 112 203901
[17] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Nature 548 187
[18] Chen W, Özdemir Ş K, Zhao G, Wiersig J and Yang L 2017 Nature 548 192
[19] Zhang M, Sweeney W, Hsu C W, Yang L, Stone A D and Jiang L 2019 Phys. Rev. Lett. 123 180501
[20] Dembowski C, Gräf H D, Harney H L, Heine A, Heiss W D, Rehfeld H and Richter A 2001 Phys. Rev. Lett. 86 787
[21] Mailybaev A A, Kirillov O N and Seyranian A P 2005 Phys. Rev. A 72 014104
[22] Lee S B, Yang J, Moon S, Lee S Y, Shim J B, Kim S W, Lee J H and An K 2009 Phys. Rev. Lett. 103 134101
[23] Gao T, Estrecho E, Bliokh K Y, Liew T C H, Fraser M D, Brodbeck S, Kamp M, Schneider C, Höfling S, Yamamoto Y, Nori F, Kivshar Y S, Truscott A G, Dall R G and Ostrovskaya E A 2015 Nature 526 554
[24] Uzdin R, Mailybaev A and Moiseyev N 2011 J. Phys. A 44 435302
[25] Berry M V and Uzdin R 2011 J. Phys. A 44 435303
[26] Gilary I, Mailybaev A A and Moiseyev N 2013 Phys. Rev. A 88 010102(R)
[27] Milburn T J, Doppler J, Holmes C A, Portolan S, Rotter S and Rabl P 2015 Phys. Rev. A 92 52124
[28] Hassan A U, Zhen B, Soljačić M, Khajavikhan M and Christodoulides D N 2017 Phys. Rev. Lett. 118 93002
[29] Wang H, Lang L J and Chong Y D 2018 Phys. Rev. A 98 12119
[30] Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N and Rotter S 2016 Nature 537 76
[31] Xu H, Mason D, Jiang L and Harris J G E 2016 Nature 537 80
[32] Yoon J W, Choi Y, Hahn C, Kim G, Song S H, Yang K Y, Lee J Y, Kim Y, Lee C S, Shin J K, Lee H S and Berini P 2018 Nature 562 86
[33] Zhang X L, Wang S, Hou B and Chan C T 2018 Phys. Rev. X 8 021066
[34] Liu W, Wu Y, Duan C K, Rong X and Du J 2020 arXiv:2002.06798v1 [quant-ph]
[35] Hassan A U, Galmiche G L, Harari G, LiKamWa P, Khajavikhan M, Segev M and Christodoulides D N 2017 Phys. Rev. A 96 052129
[36] Hassan A U, Galmiche G L, Harari G, LiKamWa P, Khajavikhan M, Segev M and Christodoulides D N 2017 Phys. Rev. A 96 069908
[37] Zhang X L, Song J F, Chan C T and Sun H B 2019 Phys. Rev. A 99 063831
[38] Geim A K, Simon M D, Boamfa M I and Heflinger L O 1999 Nature 400 323
[39] Slezak B R, Lewandowski C W, Hsu J F and D'Urso B 2018 New J. Phys. 20 063028
[40] Zheng D, Leng Y, Kong X, Li R, Wang Z, Luo X, Zhao J, Duan C K, Huang P, Du J, Carlesso M and Bassi A 2020 Phys. Rev. Res. 2 013057
[41] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 93902
[42] Nenciu G and Rasche G 1992 J. Phys. A 25 5741
[43] Gong J and Wang Q 2019 Phys. Rev. A 99 012107
[44] Demange G and Graefe E M 2012 J. Phys. A 45 025303
[45] Zhang X L and Chan C T 2019 Commun. Phys. 2 63
[46] Longhi S 2019 Phys. Rev. Lett. 122 237601
[47] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 86801
[48] Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761
[49] Yang K, Zhou L, Ma W, Kong X, Wang P, Qin X, Rong X, Wang Y, Shi F, Gong J and Du J 2019 Phys. Rev. B 100 085308
[50] Li J, Harter A K, Liu J, de Melo L, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855
Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 100301
[2] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 100301
[3] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 100301
[4] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 100301
[5] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 100301
[6] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 100301
[7] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 100301
[8] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 100301
[9] Zi-Wei Zhu, Ji-Yuan Zheng, Lai Wang, Bing Xiong, Chang-Zheng Sun, Zhi-Biao Hao, Yi Luo, Yan-Jun Han, Jian Wang, Hong-Tao Li. $Ab\ Initio$ Calculation of Dielectric Function in Wurtzite GaN Based on Walter's Model[J]. Chin. Phys. Lett., 2017, 34(3): 100301
[10] Long Du, Yong-Long Wang, Guo-Hua Liang, Guang-Zhen Kang, Hong-Shi Zong. Schrödinger Equation of a Particle on a Rotating Curved Surface[J]. Chin. Phys. Lett., 2016, 33(03): 100301
[11] Jie Gao, Min-Cang Zhang. Analytical Solutions to the $D$-Dimensional Schrödinger Equation with the Eckart Potential[J]. Chin. Phys. Lett., 2016, 33(01): 100301
[12] FATEME Hoseini, MA Kai, HASSAN Hassanabadi. Motion of a Nonrelativistic Quantum Particle in Non-commutative Phase Space[J]. Chin. Phys. Lett., 2015, 32(10): 100301
[13] DIAO Xin-Feng, LONG Chao-Yun, KONG Bo, LONG Zheng-Wen. The Noncommutative Landau Problem in Podolsky's Generalized Electrodynamics[J]. Chin. Phys. Lett., 2015, 32(4): 100301
[14] A. N. Ikot, H. P. Obong, H. Hassanabadi. Minimal Length Quantum Mechanics of Dirac Particles in Noncommutative Space[J]. Chin. Phys. Lett., 2015, 32(03): 100301
[15] YANG Yin-Biao, WANG Wen-Ge. A Phenomenon of Decoherence Induced by Chaotic Environment[J]. Chin. Phys. Lett., 2015, 32(03): 100301
Full text