Chin. Phys. Lett.  2020, Vol. 37 Issue (1): 017104    DOI: 10.1088/0256-307X/37/1/017104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe$_{2}$ Films
Yequan Chen, Yongda Chen, Jiai Ning, Liming Chen, Wenzhuo Zhuang, Liang He, Rong Zhang, Yongbing Xu**, Xuefeng Wang**
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
Cite this article:   
Yequan Chen, Yongda Chen, Jiai Ning et al  2020 Chin. Phys. Lett. 37 017104
Download: PDF(1303KB)   PDF(mobile)(1343KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Topological Weyl semimetal WTe$_{2}$ with large-scale film form has a promising prospect for new-generation spintronic devices. However, it remains a hard task to suppress the defect states in large-scale WTe$_{2}$ films due to the chemical nature. Here we significantly improve the crystalline quality and remove the Te vacancies in WTe$_{2}$ films by post annealing. We observe the distinct Shubnikov-de Haas quantum oscillations in WTe$_{2}$ films. The nontrivial Berry phase can be revealed by Landau fan diagram analysis. The Hall mobility of WTe$_{2}$ films can reach 1245 cm$^{2}$V$^{-1}$s$^{-1}$ and 1423 cm$^{2}$V$^{-1}$s$^{-1}$ for holes and electrons with the carrier density of $5\times 10^{19}$ cm$^{-3}$ and $2\times 10^{19}$ cm$^{-3}$, respectively. Our work provides a feasible route to obtain high-quality Weyl semimetal films for the future topological quantum device applications.
Received: 20 December 2019      Published: 26 December 2019
PACS:  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  71.20.Be (Transition metals and alloys)  
  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2017YFA0206304 and 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos 61822403, 11874203, 11774160, 61427812 and U1732159), the Fundamental Research Funds for the Central Universities (Grant Nos 021014380080 and 021014380113), the Natural Science Foundation of Jiangsu Province of China (Grant No BK20192006), and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/37/1/017104       OR      http://cpl.iphy.ac.cn/Y2020/V37/I1/017104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yequan Chen
Yongda Chen
Jiai Ning
Liming Chen
Wenzhuo Zhuang
Liang He
Rong Zhang
Yongbing Xu
Xuefeng Wang
[1]Schubnikow L and Haas W J d 1930 Proc. Neth. R. Acad. Sci. 33 130
[2]Shoenberg D 2009 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press)
[3]Chakravarty S and Kee H Y 2008 Proc. Natl. Acad. Sci. USA 105 8835
[4]Tang F, Po H C, Vishwanath A et al 2019 Nature 566 486
[5]Zhang T, Jiang Y, Song Z et al 2019 Nature 566 475
[6]Vergniory M G, Elcoro L, Felser C et al 2019 Nature 566 480
[7]Shekhar C, Nayak A K, Sun Y et al 2015 Nat. Phys. 11 645
[8]Zhang H, Liu C X , Qi X L et al 2009 Nat. Phys. 5 438
[9]Petrushevsky M, Lahoud E, Ron A et al 2012 Phys. Rev. B 86 045131
[10]Xiang Z J, Zhao D, Jin Z et al 2015 Phys. Rev. Lett. 115 226401
[11]Ali M N, Xiong J, Flynn S et al 2014 Nature 514 205
[12]Wang C M, Lu H Z and Shen S Q 2016 Phys. Rev. Lett. 117 077201
[13]Wang C M, Sun H P, Lu H Z et al 2017 Phys. Rev. Lett. 119 136806
[14]Pletikosic I, Ali M N, Fedorov A V et al 2014 Phys. Rev. Lett. 113 216601
[15]Kang D, Zhou Y, Yi W et al 2015 Nat. Commun. 6 7804
[16]Pan X C, Chen X, Liu H et al 2015 Nat. Commun. 6 7805
[17]Wang Y, Liu E, Liu H et al 2016 Nat. Commun. 7 13142
[18]Fei Z Y, Palomaki T, Wu S F et al 2017 Nat. Phys. 13 677
[19]Tang S J, Zhang C F, Wong D et al 2017 Nat. Phys. 13 683
[20]Wu S F, Fatemi V, Gibson Q D et al 2018 Science 359 76
[21]Fatemi V, Wu S F, Cao Y et al 2018 Science 362 926
[22]Sajadi E, Palomaki T, Fei Z Y et al 2018 Science 362 922
[23]Zhang E, Chen R, Huang C et al 2017 Nano Lett. 17 878
[24]Zhou J, Lin J, Huang X et al 2018 Nature 556 355
[25]Li J, Cheng S, Liu Z et al 2018 J. Phys. Chem. C 122 7005
[26]Zhou J, Liu F, Lin J et al 2017 Adv. Mater. 29 1603471
[27]Asaba T, Wang Y, Li G et al 2018 Sci. Rep. 8 6520
[28]Jia Z Y , Song Y H , Li X B et al 2017 Phys. Rev. B 96 041108
[29]Yao J D, Zheng Z Q and Yang G W 2019 Prog. Mater. Sci. 106 100573
[30]Gao M, Zhang M H, Niu W et al 2017 Appl. Phys. Lett. 111 031906
[31]Vermeulen P A, Momand J and Kooi B J 2019 CrystEngComm 21 3409
[32]Kong W D, Wu S F , Richard P et al 2015 Appl. Phys. Lett. 106 081906
[33]Cai P L, Hu J, He L P et al 2015 Phys. Rev. Lett. 115 057202
[34]Lv Y Y, Zhang B B, Li X et al 2016 Sci. Rep. 6 26903
[35]Wang X, Du Y, Dou S et al 2012 Phys. Rev. Lett. 108 266806
[36]Zhang M H, Wang X F, Zhang S et al 2016 IEEE Electron Device Lett. 37 1231
[37]Yang Y K , Xiu F X , Wang F Q et al 2019 Chin. Phys. B 28 107502
[38]Pan H, Zhang K, Wei Z et al 2016 Appl. Phys. Lett. 108 183103
[39]Huang X W , Liu X X , Yu P et al 2019 Chin. Phys. Lett. 36 077101
[40]Fatemi V, Gibson Q D, Watanabe K et al 2017 Phys. Rev. B 95 041410
[41]Novak M, Sasaki S, Segawa K et al 2015 Phys. Rev. B 91 041203
Related articles from Frontiers Journals
[1] Xiang-Wei Huang, Xiao-Xiong Liu, Peng Yu, Pei-Ling Li, Jian Cui, Jian Yi, Jian-Bo Deng, Jie Fan, Zhong-Qing Ji, Fan-Ming Qu, Xiu-Nian Jing, Chang-Li Yang, Li Lu, Zheng Liu, Guang-Tong Liu. Magneto-Transport and Shubnikov–de Haas Oscillations in the Type-II Weyl Semimetal Candidate NbIrTe$_{4}$ Flake[J]. Chin. Phys. Lett., 2019, 36(7): 017104
[2] D. S. Wu, Z. Y. Mi, Y. J. Li, W. Wu, P. L. Li, Y. T. Song, G. T. Liu, G. Li, J. L. Luo. Single Crystal Growth and Magnetoresistivity of Topological Semimetal CoSi[J]. Chin. Phys. Lett., 2019, 36(7): 017104
[3] Ping Ai, Qiang Gao, Jing Liu, Yuxiao Zhang, Cong Li, Jianwei Huang, Chunyao Song, Hongtao Yan, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Xing-Jiang Zhou. Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor[J]. Chin. Phys. Lett., 2019, 36(6): 017104
[4] Xi Zhang, Tianchuang Luo, Xiyao Hu, Jing Guo, Gongchang Lin, Yuehui Li, Yanzhao Liu, Xiaokang Li, Jun Ge, Ying Xing, Zengwei Zhu, Peng Gao, Liling Sun, Jian Wang. Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe$_{2}$[J]. Chin. Phys. Lett., 2019, 36(5): 017104
[5] Ying Ding, Lin Zhao, Hong-Tao Yan, Qiang Gao, Jing Liu, Cheng Hu, Jian-Wei Huang, Cong Li, Yu Xu, Yong-Qing Cai, Hong-Tao Rong, Ding-Song Wu, Chun-Yao Song, Hua-Xue Zhou, Xiao-Li Dong, Guo-Dong Liu, Qing-Yan Wang, Shen-Jin Zhang, Zhi-Min Wang, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Chuang-Tian Chen, X. J. Zhou. Disappearance of Superconductivity and a Concomitant Lifshitz Transition in Heavily Overdoped Bi$_2$Sr$_2$CuO$_{6}$ Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(1): 017104
[6] Cheng Hu, Jian-Fa Zhao, Ying Ding, Jing Liu, Qiang Gao, Lin Zhao, Guo-Dong Liu, Li Yu, Chang-Qing Jin, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Evidence for Multiple Underlying Fermi Surface and Isotropic Energy Gap in the Cuprate Parent Compound Ca$_2$CuO$_2$Cl$_2$[J]. Chin. Phys. Lett., 2018, 35(6): 017104
[7] Jun Ma, Bin-Bin Fu, Jun-Zhang Ma, Ling-Yuan Kong, Di Chen, Ji-Feng Shao, Chang-Jin Zhang, Tian Qian, Yu-Heng Zhang, Hong Ding. Experimental Investigation of Electronic Structure of La(O,F)BiSe$_{2}$[J]. Chin. Phys. Lett., 2016, 33(12): 017104
[8] SHI Ying-Bo, HUANG Yao-Bo, WANG Xiao-Ping, SHI Xun, ROEKEGHEM A-Van, ZHANG Wei-Lu, XU Na, RICHARD Pierre, QIAN Tian, RIENKS Emile, THIRUPATHAIAH S, ZHAO Kan, JIN Chang-Qing, SHI Ming, DING Hong. Observation of Strong-Coupling Pairing with Weakened Fermi-Surface Nesting at Optimal Hole Doping in Ca0.33Na0.67Fe2As2[J]. Chin. Phys. Lett., 2014, 31(06): 017104
[9] HUANG Yao-Bo, RICHARD Pierre, WANG Ji-Hui, WANG Xiao-Ping, SHI Xun, XU Nan, WU Zheng, LI Ang, YIN Jia-Xin, QIAN Tian, LV Bing, CHU Ching-Wu, PAN Shu-Heng, SHI Ming, DING Hong. Experimental Investigation of the Electronic Structure of Ca0.83La0.17Fe2As2[J]. Chin. Phys. Lett., 2013, 30(1): 017104
[10] TANG Ning**, HAN Kui, LU Fang-Chao, DUAN Jun-Xi, XU Fu-Jun, SHEN Bo . Exchange Enhancement of Spin-Splitting in AlxGa1−xN/GaN Heterostructures in Tilted Magnetic Fields[J]. Chin. Phys. Lett., 2011, 28(3): 017104
[11] LI Jian, WANG Yu-Peng. The Minimum Model for the Iron-Based Superconductors[J]. Chin. Phys. Lett., 2008, 25(6): 017104
[12] CHEN Zhao-Ying, XIANG Hong-Jun, YANG Jin-Long. Fermi Surface Topology of Na0.5CoO2 from the Hybrid Density Functional[J]. Chin. Phys. Lett., 2005, 22(12): 017104
[13] WANG Chuan-kui, WANG Hong-song, ZHANG Qing-gang. Spin-Related Electronic Structure of Quantum Wires with an In-plane Magnetic Field[J]. Chin. Phys. Lett., 1999, 16(5): 017104
Viewed
Full text


Abstract