Chin. Phys. Lett.  2020, Vol. 37 Issue (1): 014501    DOI: 10.1088/0256-307X/37/1/014501
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice
Liang Zhang1,2, Tian Tian1,2, Pu Huang3, Shaochun Lin1,2, Jiangfeng Du1,2,4**
1CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
3National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093
4Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026
Cite this article:   
Liang Zhang, Tian Tian, Pu Huang et al  2020 Chin. Phys. Lett. 37 014501
Download: PDF(1822KB)   PDF(mobile)(2246KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We realize a coherent transfer of mechanical excitation in a finely controlled artificial nanomechanical lattice. We also realize strong dynamic coupling between adjacent high-$Q$ mechanical resonators, via modulated dielectric force at the frequency difference between them. An excitation transfer across a lattice consisting of 7 nanobeams is observed by applying a design sequence of switching for couplings, with the final effective population reaching 0.94. This work not only demonstrates the ability to fully control an artificial lattice but also provides an efficient platform for studying complicated dynamics in one-dimensional systems.
Received: 31 October 2019      Published: 25 December 2019
PACS:  45.80.+r (Control of mechanical systems)  
  34.50.Ez (Rotational and vibrational energy transfer)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Supported by the National Key R&D Program of China under Grant No. 2018YFA0306600, the Key Research Program of Frontier Sciences of CAS under Grant No. QYZDY-SSW-SLH004, the Key R&D Team of CAS under Grant No. GJJSTD20170001, and Anhui Initiative in Quantum Information Technologies under Grant No. AHY050000.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/1/014501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I1/014501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liang Zhang
Tian Tian
Pu Huang
Shaochun Lin
Jiangfeng Du
[1]Bloch I 2005 Nat. Phys. 1 23
[2]Eckardt A 2017 Rev. Mod. Phys. 89 011004
[3]Umucalılar R O and Carusotto I 2011 Phys. Rev. A 84 043804
[4]de Léséleuc S, Lienhard V, Scholl P, Barredo D, Weber S, Lang N, Büchler H P, Lahaye T and Browaeys A 2019 Science 365 775
[5]Omran A, Levine H, Keesling A, Semeghini G, Wang T T, Ebadi S, Bernien H, Zibrov A S, Pichler H, Choi S, Cui J, Rossignolo M, Rembold P, Montangero S, Calarco T, Endres M, Greiner M, Vuletić V and Lukin M D 2019 Science 365 570
[6]Faust T, Rieger J, Seitner M J, Kotthaus J P and Weig E M 2013 Nat. Phys. 9 485
[7]Deng G W, Zhu D, Wang X H, Zou C L, Wang J T, Li H O, Cao G, Liu D, Li Y, Xiao M, Guo G C, Jiang K L, Dai X C and Guo G P 2016 Nano Lett. 16 5456
[8]Mathew J P, Patel R N, Borah A, Vijay R and Deshmukh M M 2016 Nat. Nanotechnol. 11 747
[9]Zhu D, Wang X H, Kong W C, Deng G W, Wang J T, Li H O, Cao G, Xiao M, Jiang K L, Dai X C, Guo G C, Nori F and Guo G P 2017 Nano Lett. 17 915
[10]Gajo K, Schüz S and Weig E M 2017 Appl. Phys. Lett. 111 133109
[11]Unterreithmeier Q P, Weig E M and Kotthaus J P 2009 Nature 458 1001
[12]Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbène S, Cooper N R, Bloch I and Goldman N 2015 Nat. Phys. 11 162
[13]Drost R, Ojanen T, Harju A and Liljeroth P 2017 Nat. Phys. 13 668
[14]Leykam D, Andreanov A and Flach S 2018 Adv. Phys.: X 3 1473052
[15]Tian T, Ke Y, Zhang L, Lin S, Shi Z, Huang P, Lee C and Du J 2019 Phys. Rev. B 100 024310
[16]Guardado-Sanchez E, Brown P T, Mitra D, Devakul T, Huse D A, Schauß P and Bakr W S 2018 Phys. Rev. X 8 021069
[17]Harris R, Sato Y, Berkley A J, Reis M, Altomare F, Amin M H, Boothby K, Bunyk P, Deng C, Enderud C, Huang S, Hoskinson E, Johnson M W, Ladizinsky E, Ladizinsky N, Lanting T, Li R, Medina T, Molavi R, Neufeld R, Oh T, Pavlov I, Perminov I, Poulin-Lamarre G, Rich C, Smirnov A, Swenson L, Tsai N, Volkmann M, Whittaker J and Yao J 2018 Science 361 162
[18]Huang P, Zhang L, Zhou J, Tian T, Yin P, Duan C and Du J 2016 Phys. Rev. Lett. 117 017701
[19]Huang P, Wang P, Zhou J, Wang Z, Ju C, Wang Z, Shen Y, Duan C and Du J 2013 Phys. Rev. Lett. 110 227202
[20]Okamoto H, Schilling R, Schütz H, Sudhir V, Wilson D J, Yamaguchi H and Kippenberg T J 2016 Appl. Phys. Lett. 108 153105
[21]Cleland A and Roukes M 1999 Sens. Actuators A 72 256
[22]Poot M and van der Zant H S 2012 Phys. Rep. 511 273
[23]Imboden M and Mohanty P 2014 Phys. Rep. 534 89
[24]Novotny L 2010 Am. J. Phys. 78 1199
[25]Seitner M J, Ribeiro H, Kölbl J, Faust T and Weig E M 2017 New J. Phys. 19 033011
[26]Briggs J S and Eisfeld A 2012 Phys. Rev. A 85 052111
[27]Skinner T E 2013 Phys. Rev. A 88 012110
[28]Louisell W H 1960 Coupled Mode and Parametric Electronics (New York: Wiley)
[29]Olkhovets A, Carr D, Parpia J and Craighead H 2001 IEEE 14th {IEEE} International Conference on Micro Electro Mechanical Systems 2001 01CH37090
[30]Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155
[31]Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M and Devoret M H 2010 Nature 465 64
[32]Abdo B, Kamal A and Devoret M 2013 Phys. Rev. B 87 014508
[33]O'Brien K, Macklin C, Siddiqi I and Zhang X 2014 Phys. Rev. Lett. 113 157001
[34]Asbóth J K, Oroszlány L and Pályi A 2016 A Short Course on Topological Insulators (Berlin: Springer International Publishing)
[35]El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11
[36]Süsstrunk R and Huber S D 2015 Science 349 47
[37]Chen H, Nassar H and Huang G 2018 J. Mech. Phys. Solids 117 22
[38]Chien C C, Velizhanin K A, Dubi Y, Ilic B R and Zwolak M 2018 Phys. Rev. B 97 125425
[39]Oreg J, Bergmann K, Shore B W and Rosenwaks S 1992 Phys. Rev. A 45 4888
[40]Felicetti S, Romero G, Rossini D, Fazio R and Solano E 2014 Phys. Rev. A 89 013853
[41]Kandel Y P, Qiao H, Fallahi S, Gardner G C, Manfra M J and Nichol J M 2019 Nature 573 553
[42]Ludwig M and Marquardt F 2013 Phys. Rev. Lett. 111 073603
[43]Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523
[44]Struck J, Weinberg M, Ölschläger C, Windpassinger P, Simonet J, Sengstock K, Höppner R, Hauke P, Eckardt A, Lewenstein M and Mathey L 2013 Nat. Phys. 9 738
[45]Matheny M H, Emenheiser J, Fon W, Chapman A, Salova A, Rohden M, Li J, de Badyn M H, Pósfai M, Duenas-Osorio L, Mesbahi M, Crutchfield J P, Cross M C, D'Souza R M and Roukes M L 2019 Science 363 eaav7932
Related articles from Frontiers Journals
[1] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 014501
Viewed
Full text


Abstract