Chin. Phys. Lett.  2020, Vol. 37 Issue (1): 010301    DOI: 10.1088/0256-307X/37/1/010301
GENERAL |
Critical Scaling Behaviors of Entanglement Spectra
Qi-Cheng Tang1,2, Wei Zhu1,2**
1School of Science, Westlake University, Hangzhou 310024
2Institute of Natural Sciences, Westlake Institute of Advanced Study, Hangzhou 310024
Cite this article:   
Qi-Cheng Tang, Wei Zhu 2020 Chin. Phys. Lett. 37 010301
Download: PDF(1294KB)   PDF(mobile)(1856KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the evolution of entanglement spectra under a global quantum quench from a short-range correlated state to the quantum critical point. Motivated by the conformal mapping, we find that the dynamical entanglement spectra demonstrate distinct finite-size scaling behaviors from the static case. As a prototypical example, we compute real-time dynamics of the entanglement spectra of a one-dimensional transverse-field Ising chain. Numerical simulation confirms that the entanglement spectra scale with the subsystem size $l$ as $\sim$$l^{-1}$ for the dynamical equilibrium state, much faster than $\propto$ $\ln^{-1} l$ for the critical ground state. In particular, as a byproduct, the entanglement spectra at the long time limit faithfully gives universal tower structure of underlying Ising criticality, which shows the emergence of operator-state correspondence in the quantum dynamics.
Received: 25 October 2019      Published: 08 November 2019
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  11.25.Hf (Conformal field theory, algebraic structures)  
Fund: Supported by the start-up funding from Westlake University, and the National Natural Science Foundation of China under Grant No 11974288.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/37/1/010301       OR      http://cpl.iphy.ac.cn/Y2020/V37/I1/010301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi-Cheng Tang
Wei Zhu
[1]Di Francesco P , Mathieu P, Sénéchal D 1997 Conformal Field Theory, Graduate Texts in Contemporary Physics (New York: Springer)
[2]Belavin A A, Polyakov A M and Zamolodchikov A B 1984 J. Stat. Phys. 34 763
[3]Belavin A, Polyakov A and Zamolodchikov A 1984 Nucl. Phys. B 241 333
[4]Friedan D, Qiu Z and Shenker S 1984 Phys. Rev. Lett. 52 1575
[5]Cardy J L 1986 Nucl. Phys. B 270 186
[6]Cardy J L 1986 Nucl. Phys. B 275 200
[7]Srednicki M 1993 Phys. Rev. Lett. 71 666
[8]Holzhey C, Larsen F and Wilczek F 1994 Nucl. Phys. B 424 443
[9]Calabrese P and Cardy J 2004 J. Stat. Mech. 2004 P06002
[10]Korepin V E 2004 Phys. Rev. Lett. 92 096402
[11]Calabrese P and Cardy J 2005 J. Stat. Mech. 2005 P04010
[12]Calabrese P and Cardy J 2006 Phys. Rev. Lett. 96 136801
[13]Fradkin E and Moore J E 2006 Phys. Rev. Lett. 97 050404
[14]Calabrese P and Cardy J 2007 J. Stat. Mech. 2007 P10004
[15]Calabrese P and Lefevre A 2008 Phys. Rev. A 78 032329
[16]Hsu B, Mulligan M, Fradkin E and Kim E A 2009 Phys. Rev. B 79 115421
[17]Calabrese P and Cardy J 2009 J. Phys. A 42 504005
[18]Nienhuis B, Campostrini M and Calabrese P 2009 J. Stat. Mech. 2009 P02063
[19]Alba V, Tagliacozzo L and Calabrese P 2010 Phys. Rev. B 81 060411
[20]Calabrese P, Campostrini M, Essler F and Nienhuis B 2010 Phys. Rev. Lett. 104 095701
[21]Calabrese P, Cardy J and Tonni E 2012 Phys. Rev. Lett. 109 130502
[22]Calabrese P, Cardy J and Tonni E 2013 J. Stat. Mech. 2013 P02008
[23]Cardy J 2014 Phys. Rev. Lett. 112 220401
[24]Calabrese P, Cardy J and Tonni E 2015 J. Phys. A 48 015006
[25]Coser A, Tonni E and Calabrese P 2014 J. Stat. Mech. 2014 P12017
[26]Cardy J 2016 J. Stat. Mech. 2016 023103
[27]Calabrese P and Cardy J 2016 J. Stat. Mech. 2016 064003
[28]Cardy J and Tonni E 2016 J. Stat. Mech. 2016 123103
[29]Alba V, Calabrese P and Tonni E 2018 J. Phys. A 51 024001
[30]Wen X, Ryu S and Ludwig A W W 2018 J. Stat. Mech. 2018 113103
[31]Giudici G, Mendes-Santos T, Calabrese P and Dalmonte M 2018 Phys. Rev. B 98 134403
[32]Giulio G D, Arias R and Tonni E 2019 arXiv:1905.01144
[33]Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[34]Pollmann F, Mukerjee S, Turner A M and Moore J E 2009 Phys. Rev. Lett. 102 255701
[35]Metlitski M A, Fuertes C A and Sachdev S 2009 Phys. Rev. B 80 115122
[36]Whitsitt S, Witczak-Krempa W and Sachdev S 2017 Phys. Rev. B 95 045148
[37]Zhu W, Chen X, He Y C and Witczak-Krempa W 2018 Sci. Adv. 4 eaat5535
[38]Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
[39]Laflorencie N 2016 Phys. Rep. 646 1
[40]Fidkowski L 2010 Phys. Rev. Lett. 104 130502
[41]Prodan E, Hughes T L and Bernevig B A 2010 Phys. Rev. Lett. 105 115501
[42]Turner A M, Zhang Y and Vishwanath A 2010 Phys. Rev. B 82 241102
[43]Qi X L, Katsura H and Ludwig A W W 2012 Phys. Rev. Lett. 108 196402
[44]Thomale R, Arovas D P and Bernevig B A 2010 Phys. Rev. Lett. 105 116805
[45]De Chiara G , Lepori L, Lewenstein M and Sanpera A 2012 Phys. Rev. Lett. 109 237208
[46]Lepori L, De Chiara G and Sanpera A 2013 Phys. Rev. B 87 235107
[47]Giampaolo S M, Montangero S, Dell'Anno F, De Siena S and Illuminati F 2013 Phys. Rev. B 88 125142
[48]Lundgren R, Blair J, Laurell P, Regnault N, Fiete G A, Greiter M and Thomale R 2016 Phys. Rev. B 94 081112
[49]Schuler M, Whitsitt S, Henry L P, Sachdev S and Läuchli A M 2016 Phys. Rev. Lett. 117 210401
[50]Whitsitt S, Schuler M, Henry L P, Läuchli A M and Sachdev S 2017 Phys. Rev. B 96 035142
[51]Stojevic V, Haegeman J, McCulloch I P, Tagliacozzo L and Verstraete F 2015 Phys. Rev. B 91 035120
[52]Läuchli A M 2013 arXiv:1303.0741
[53]Laflorencie N and Rachel S 2014 J. Stat. Mech. 2014 P11013
[54]Lieb E, Schultz T and Mattis D 1961 Ann. Phys. 16 407
[55]Peschel I and Eisler V 2009 J. Phys. A 42 504003
[56]Torlai G, Tagliacozzo L and Chiara G D 2014 J. Stat. Mech. 2014 P06001
[57]Vidal G 2004 Phys. Rev. Lett. 93 040502
[58]Chepiga N and Mila F 2017 Phys. Rev. B 96 054425
[59]Milsted A and Vidal G 2017 Phys. Rev. B 96 245105
[60]Zou Y, Milsted A and Vidal G 2018 Phys. Rev. Lett. 121 230402
[61]Zou Y and Vidal G 2019 arXiv:1907.10704
[62]Surace J, Tagliacozzo L and Tonni E 2019 arXiv:1909.07381
Related articles from Frontiers Journals
[1] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 010301
[2] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 010301
[3] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 010301
[4] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 010301
[5] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 010301
[6] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 010301
[7] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 010301
[8] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 010301
[9] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 010301
[10] Jie Zhou, Hong-Yi Su, Fu-Lin Zhang, Hong-Biao Zhang, Jing-Ling Chen. Solving the Jaynes–Cummings Model with Shift Operators Constructed by Means of the Matrix-Diagonalizing Technique[J]. Chin. Phys. Lett., 2018, 35(1): 010301
[11] Yan Li, Xiang-Jun Ye, Jing-Ling Chen. Nonlocality Distillation and Trivial Communication Complexity for High-Dimensional Systems[J]. Chin. Phys. Lett., 2016, 33(08): 010301
[12] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 010301
[13] Yong-Gang Tan, Yao-Hua Hu, Hai-Feng Yang. Biased Random Number Generator Based on Bell's Theorem[J]. Chin. Phys. Lett., 2016, 33(03): 010301
[14] Xu Chen, Hong-Yi Su, Jing-Ling Chen. Connecting Quantum Contextuality and Genuine Multipartite Nonlocality with the Quantumness Witness[J]. Chin. Phys. Lett., 2016, 33(01): 010301
[15] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 010301
Viewed
Full text


Abstract