Chin. Phys. Lett.  2019, Vol. 36 Issue (9): 097301    DOI: 10.1088/0256-307X/36/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region
Lu-Lu Yang1, Jun-Jie Shi2, Min Zhang3, Zhong-Ming Wei4, Yi-Min Ding2, Meng Wu2, Yong He3, Yu-Lang Cen2, Wen-Hui Guo2, Shu-Hang Pan2, Yao-Hui Zhu1**
1Physics Department, Beijing Technology and Business University, Beijing 100048
2State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871
3College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022
4State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Lu-Lu Yang, Jun-Jie Shi, Min Zhang et al  2019 Chin. Phys. Lett. 36 097301
Download: PDF(1530KB)   PDF(mobile)(1514KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional (2D) InSe and WS$_2$ exhibit promising characteristics for optoelectronic applications. However, they both have poor absorption of visible light due to wide bandgaps: 2D InSe has high electron mobility but low hole mobility, while 2D WS$_2$ is on the contrary. We propose a 2D heterostructure composed of their monolayers as a solution to both problems. Our first-principles calculations show that the heterostructure has a type-II band alignment as expected. Consequently, the bandgap of the heterostructure is reduced to 2.19 eV, which is much smaller than those of the monolayers. The reduction in bandgap leads to a considerable enhancement of the visible-light absorption, such as about fivefold (threefold) increase in comparison to monolayer InSe (WS$_2$) at the wavelength of 490 nm. Meanwhile, the type-II band alignment also facilitates the spatial separation of photogenerated electron-hole pairs; i.e., electrons (holes) reside preferably in the InSe (WS$_2$) layer. As a result, the two layers complement each other in carrier mobilities of the heterostructure: the photogenerated electrons and holes inherit the large mobilities from the InSe and WS$_2$ monolayers, respectively.
Received: 12 January 2019      Published: 23 August 2019
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11404013, 11474012, 11364030, 61622406, 61571415, 51502283 and 11605003, the National Key Research and Development Program of China under Grant No 2017YFA0206303, the MOST of China, and the 2018 Graduate Research Program of Beijing Technology and Business University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/9/097301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I9/097301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lu-Lu Yang
Jun-Jie Shi
Min Zhang
Zhong-Ming Wei
Yi-Min Ding
Meng Wu
Yong He
Yu-Lang Cen
Wen-Hui Guo
Shu-Hang Pan
Yao-Hui Zhu
[1]Wang Q H et al 2012 Nat. Nanotechnol. 7 699
[2]Chhowalla M et al 2013 Nat. Chem. 5 263
[3]Xu K et al 2016 Nanoscale 8 16802
[4]Huang W et al 2016 CrystEngComm 18 3968
[5]Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
[6]Feng W, Zheng W, Cao W and Hu P 2014 Adv. Mater. 26 6587
[7]Bandurin D A et al 2017 Nat. Nanotechnol. 12 223
[8]Mudd G W et al 2013 Adv. Mater. 25 5714
[9]Zhuang H L and Hennig R G 2013 Chem. Mater. 25 3232
[10]Hu T, Zhou J and Dong J 2017 Phys. Chem. Chem. Phys. 19 21722
[11]Ding Y M et al 2017 Nanoscale 9 14682
[12]Yan F et al 2017 Nanotechnology 28 27LT01
[13]Wu Z B et al 2018 Chin. Phys. B 27 077302
[14]He Y et al 2019 J. Phys. D 52 015304
[15]He X et al 2016 Appl. Phys. Lett. 109 173105
[16]Ju L et al 2018 Appl. Surf. Sci. 434 365
[17]Kumar R, Das D and Singh A K 2018 J. Catal. 359 143
[18]Wang G et al 2018 J. Phys. D 51 025109
[19]Coleman J N et al 2011 Science 331 568
[20]PereaL ópez N et al 2013 Adv. Funct. Mater. 23 5511
[21]Zhuang H L and Hennig R G 2013 J. Phys. Chem. C 117 20440
[22]Ovchinnikov D et al 2014 ACS Nano 8 8174
[23]Yang Y et al 2015 Adv. Funct. Mater. 25 6199
[24]Pesci F M et al 2017 ACS Catal. 7 4990
[25]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27]Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[28]Ferreira L G, Marques M and Teles L K 2008 Phys. Rev. B 78 125116
[29]Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[30]Toroker M C et al 2011 Phys. Chem. Chem. Phys. 13 16644
[31]Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B 62 8828
[32]Qiao J et al 2014 Nat. Commun. 5 4475
[33]Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[34]Rigosi A F et al 2016 Phys. Rev. B 94 075440
[35]Yun W S et al 2012 Phys. Rev. B 85 033305
[36]Kang J et al 2013 Appl. Phys. Lett. 102 012111
[37]Amin B, Kaloni T P and Schwingenschlögl U 2014 RSC Adv. 4 34561
[38]Zeng F, Zhang W B and Tang B Y 2015 Chin. Phys. B 24 097103
[39]Debbichi L, Eriksson O and Lebègue S 2015 J. Phys. Chem. Lett. 6 3098
[40]Peng Q et al 2017 Catal. Sci. Technol. 7 2744
[41]Jiang Z et al 2017 Phys. Rev. Lett. 118 266401
[42]Kang P et al 2017 2D Mater. 4 045014
[43]Qiao J et al 2018 Sci. Bull. 63 159
Related articles from Frontiers Journals
[1] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 097301
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 097301
[3] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 097301
[4] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 097301
[5] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 097301
[6] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 097301
[7] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 097301
[8] Yu-Lu Zheng , Liang Li, Fang-Fei Li , Qiang Zhou, and Tian Cui . Pressure-Dependent Phonon Scattering of Layered GaSe Prepared by Mechanical Exfoliation[J]. Chin. Phys. Lett., 2020, 37(8): 097301
[9] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 097301
[10] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 097301
[11] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 097301
[12] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 097301
[13] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 097301
[14] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 097301
[15] Rui-Kuan Xie, Ai-Jiang Lu, Huai-Zhong Xing, Yi-Jie Zeng, Yan Huang, Xiao-Shuang Chen. First Principles Study on the Magnetism of Rectangular Nanosilicenes[J]. Chin. Phys. Lett., 2018, 35(1): 097301
Viewed
Full text


Abstract