Chin. Phys. Lett.  2019, Vol. 36 Issue (8): 087401    DOI: 10.1088/0256-307X/36/8/087401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure
Ya-Ting Jia1,2, Jian-Fa Zhao1,2, Si-Jia Zhang1, Shuang Yu1,2, Guang-Yang Dai1,2, Wen-Min Li1, Lei Duan1, Guo-Qiang Zhao1,2, Xian-Cheng Wang1, Xu Zheng1, Qing-Qing Liu1, You-Wen Long1,2,3, Zhi Li4, Xiao-Dong Li5, Hong-Ming Weng1, Run-Ze Yu1, Ri-Cheng Yu1, Chang-Qing Jin1,2,3**
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physics, University of Chinese Academy of Sciences, Beijing 100190
3Songshan Lake Materials Laboratory, Guangdong 523808
4School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094
5Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang et al  2019 Chin. Phys. Lett. 36 087401
Download: PDF(1401KB)   PDF(mobile)(1543KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, $\theta$-TaN was proposed to be a topological semimetal with a new type of triply degenerate nodal points. Here, we report studies of pressure dependence of transport, Raman spectroscopy and synchrotron x-ray diffraction on $\theta$-TaN up to 61 GPa. We find that $\theta$-TaN becomes superconductive above 24.6 GPa with $T_{\rm c}$ at 3.1 K. The $\theta$-TaN is of n-type carrier nature with carrier density about $1.1\times 10^{20}$/cm$^{3}$ at 1.2 GPa and 20 K, while the carrier density increases with the pressure and saturates at about 40 GPa in the measured range. However, there is no crystal structure transition with pressure up to 39 GPa, suggesting the topological nature of the pressure induced superconductivity.
Received: 17 May 2019      Published: 22 July 2019
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.25.Dw (Superconductivity phase diagrams)  
  74.62.Fj (Effects of pressure)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2018YFA0305701.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/8/087401       OR      https://cpl.iphy.ac.cn/Y2019/V36/I8/087401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ya-Ting Jia
Jian-Fa Zhao
Si-Jia Zhang
Shuang Yu
Guang-Yang Dai
Wen-Min Li
Lei Duan
Guo-Qiang Zhao
Xian-Cheng Wang
Xu Zheng
Qing-Qing Liu
You-Wen Long
Zhi Li
Xiao-Dong Li
Hong-Ming Weng
Run-Ze Yu
Ri-Cheng Yu
Chang-Qing Jin
[1]Weng H, Fang C, Fang Z and Dai X 2016 Phys. Rev. B 93 241202
[2]Chiu C K, Teo J C, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[3]Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
[4]Young S M, Zaheer S, Teo J, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[5]Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai Xi and Fang Z 2012 Phys. Rev. B 85 195320
[6]Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[7]Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001
[8]Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z and Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24
[9]Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M and Ando Y 2011 Phys. Rev. Lett. 107 217001
[10]Sato T, Tanaka Y, Nakayama K, Souma S, Takahashi T, Sasaki S, Ren Z, Taskin A, Segawa K and Ando Y 2013 Phys. Rev. Lett. 110 206804
[11]Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K and Paglione J 2013 Phys. Rev. Lett. 111 087001
[12]Zhu J, Zhang J L, Kong P P, Zhang S J, Yu X H, Zhu J L, Liu Q Q, Li X, Yu R C, Ahuja R, Yang W G, Shen G Y, Mao H K, Weng H M, Dai X, Fang Z, Zhao Y S and Jin C Q 2013 Sci. Rep. 3 2016
[13]Kong P P, Sun F, Xing L Y, Zhu J, Zhang S J, Li W M, Liu Q Q, Wang X C, Feng S M, Yu X H, Zhu J L, Yu R C, Yang W G, Shen G Y, Zhao Y S, Ahuja R, Mao H K and Jin C Q 2014 Sci. Rep. 4 6679
[14]Zhang J L, Zhang S J, Kong P P, Zhu J, Li X D, Liu J, Cao L Z and Jin C Q 2013 Physica C 493 75
[15]He L P, Jia Y T, Zhang S J, Hong X C, Jin C Q and Li S Y 2016 npj Quantum Mater. 1 16014
[16]Jin M L, Sun F, Xing L Y, Zhang S J, Feng S M, Kong P P, Li W M, Wang X C, Zhu J L, Long Y W, Bai H Y, Gu C Z, Yu R C, Yang W G, Shen G Y, Zhao Y S, Mao H K and Jin C Q 6 2017 Sci. Rep. 7 39699
[17]Liu Y, Long Y J, Zhao L X, Nie S M, Zhang S J, Weng Y X, Jin M L, Li W M, Liu Q Q, Long Y W, Yu R C, Gu C Z, Sun F, Yang W G, Mao H K, Feng X L, Li Q, Zheng W T, Weng H M, Dai X, Fang Z, Chen G F and Jin C Q 2017 Sci. Rep. 7 44367
[18]Zhang S J, Zhang J L, Yu X H, Zhu J, Kong P P, Feng S M, Liu Q Q, Yang L X, Wang X C, Cao L Z, Yang W G, Wang L, Mao H G, Zhao Y S, Liu H Z, Dai X, Fang Z, Zhang S C and Jin C Q 2012 J. Appl. Phys. 111 112630
[19]Mao H, Xu J A and Bell P 1986 J. Geophys. Res.: Solid Earth 91 4673
[20]Hammersley A, Svensson S, Hanfl M, Fitch A and Hausermann D 1996 High Press. Res. 14 235
[21]Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Côté M, Deutsch T, Genovese L, Ghosez Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P K, Jollet F and Zwanziger J W 2009 Comput. Phys. Commun. 180 2582
[22]Christensen A N and Lebech B 1978 Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 34 261
[23]Gatterer J, Dufek G, Ettmayer P and Kieffer R 1975 Monatsh. Chem. - Chem. Mon. 106 1137
[24]Boiko L G and Popova S V 1970 JETP Lett. 12 101
[25]Gillan E G and Kaner R B 1994 Inorg. Chem. 33 5693
[26]Ensinger W, Kiuchi M and Satou M 1995 J. Appl. Phys. 77 6630
[27]Brauer G, Mohr E, Neuhaus A and Skokan A 1972 Monatsh. Chem. - Chem. Mon. 103 794
[28]Bay T V, Naka T, Huang Y K, Luigjes H, Golden M S and de Visser A 2012 Phys. Rev. Lett. 108 057001
[29]Xing Y, Wang H, Li C K, Zhang X, Liu J, Zhang Y W, Luo J W, Wang Z Q, Wang Y, Ling L S, Tian M L, Jia S, Feng J, Liu X J, Wei J and Wang J 2016 npj Quantum Mater. 1 16005
Related articles from Frontiers Journals
[1] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 087401
[2] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 087401
[3] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 087401
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 087401
[5] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 087401
[6] Jiao-Jiao Song, Yang Luo, Chen Zhang, Qi-Yi Wu, Tomasz Durakiewicz, Yasmine Sassa, Oscar Tjernberg, Martin Månsson, Magnus H. Berntsen, Yin-Zou Zhao, Hao Liu, Shuang-Xing Zhu, Zi-Teng Liu, Fan-Ying Wu, Shu-Yu Liu, Eric D. Bauer, Ján Rusz, Peter M. Oppeneer, Ya-Hua Yuan, Yu-Xia Duan, and Jian-Qiao Meng. The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(10): 087401
[7] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 087401
[8] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 087401
[9] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 087401
[10] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 087401
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 087401
[12] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 087401
[13] Qiang Gao, Lin Zhao, Cheng Hu, Hongtao Yan, Hao Chen, Yongqing Cai, Cong Li, Ping Ai, Jing Liu, Jianwei Huang, Hongtao Rong, Chunyao Song, Chaohui Yin, Qingyan Wang, Yuan Huang, Guo-Dong Liu, Zu-Yan Xu, and Xing-Jiang Zhou. Electronic Evolution from the Parent Mott Insulator to a Superconductor in Lightly Hole-Doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2020, 37(8): 087401
[14] Ping Ai, Qiang Gao, Jing Liu, Yuxiao Zhang, Cong Li, Jianwei Huang, Chunyao Song, Hongtao Yan, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Xing-Jiang Zhou. Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor[J]. Chin. Phys. Lett., 2019, 36(6): 087401
[15] Ying Ding, Lin Zhao, Hong-Tao Yan, Qiang Gao, Jing Liu, Cheng Hu, Jian-Wei Huang, Cong Li, Yu Xu, Yong-Qing Cai, Hong-Tao Rong, Ding-Song Wu, Chun-Yao Song, Hua-Xue Zhou, Xiao-Li Dong, Guo-Dong Liu, Qing-Yan Wang, Shen-Jin Zhang, Zhi-Min Wang, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Chuang-Tian Chen, X. J. Zhou. Disappearance of Superconductivity and a Concomitant Lifshitz Transition in Heavily Overdoped Bi$_2$Sr$_2$CuO$_{6}$ Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(1): 087401
Viewed
Full text


Abstract