Chin. Phys. Lett.  2019, Vol. 36 Issue (8): 085201    DOI: 10.1088/0256-307X/36/8/085201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Comparison of ITG and TEM Microturbulence in DIII–D Tokamak
Wei Hu1,2,3, Hong-Ying Feng4,2,1,3, Wen-Lu Zhang2,5,3,1**
1Department of Modern Physics, University of Science and Technology of China, Hefei 230026
2Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3University of Chinese Academy of Sciences, Beijing 100049
4College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002
5Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Wei Hu, Hong-Ying Feng, Wen-Lu Zhang 2019 Chin. Phys. Lett. 36 085201
Download: PDF(1798KB)   PDF(mobile)(1790KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Microturbulence excited by ion temperature gradient (ITG)-dominant and trapped electron mode (TEM)-dominant instabilities is compared in the fusion plasmas using gyrokinetic simulations based on the realistic equilibrium data from DIII–D discharges. Collisions make a difference between two plasmas and give rise to similar results to those found in previous research experiments [Chin. Phys. Lett. 35 (2018) 105201]. The mode structures and frequency spectrum of the most unstable modes characterized by the ITG-dominant and TEM-dominant instabilities are excited in the lower and higher $T_{\rm e}$ plasmas in the linear simulations. In the nonlinear simulations, contour plots of the perturbed potential are shown in the saturated stage, with the radial correlation lengths being microscopic on the order of the ion thermal gyroradius $\rho_{\rm i}$ in both the ITG and the TEM microturbulences. The dominant mode wavelengths of the perturbed potential increase when evolving from linear to nonlinear stages in both simulations, with the fluctuation energy spreading from the linearly dominant modes to the nonlinearly dominant modes. The radial correlation lengths are about 4$\rho_{\rm i}$ and the electron density fluctuation intensities are about 0.85% in the nonlinear saturated stage, which are in agreement with the experimental results.
Received: 05 April 2019      Published: 22 July 2019
PACS:  52.35.Ra (Plasma turbulence)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.35.Kt (Drift waves)  
Fund: Supported by the National MCF Energy R&D Program under Grant Nos 2018YFE0304100, 2017YFE0301300 and 2018YFE0311300, the National Natural Science Foundation of China under Grant Nos 11675257, 11675256, 11875067, 11835016 and 11705275, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB16010300, the Key Research Program of Frontier Science of the Chinese Academy of Sciences under Grant No QYZDJ-SSW-SYS016, and the External Cooperation Program of the Chinese Academy of Sciences under Grant No 112111KYSB20160039.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/8/085201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I8/085201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Hu
Hong-Ying Feng
Wen-Lu Zhang
[1]Lin Z and Hahm T S 2004 Phys. Plasmas 11 1099
[2]Xiao Y and Lin Z 2009 Phys. Rev. Lett. 103 085004
[3]Dimit A M, Bateman G, Beer M A, Cohen B I, Dorl, W, Hammett G W, Kim C, Kinsey J E, Kotschenreuther M, Kritz A H, Lao L L, Mandrekas J, Nevins W M, Parker S E, Redd A J, Shumaker D E, Sydora R and Weiland J 2000 Phys. Plasmas 7 969
[4]Ryter F, Angioni C, Peeters A, Leuterer F, Fahrbach H U and Suttrop W 2005 Phys. Rev. Lett. 95 085001
[5]Vlad M, Spineanu F, Itoh S I, Yagi M and Itoh K 2005 Plasma Phys. Control. Fusion 47 1015
[6]Chen L 1999 J. Geophys. Res.: Space Phys. 104 2421
[7]Zhang W, Lin Z and Chen L 2008 Phys. Rev. Lett. 101 095001
[8]Chowdhury J, Wang W, Ethier S, Manickam J and Ganesh R 2011 Phys. Plasmas 18 112510
[9]Günter S, Conway G et al 2007 Nucl. Fusion 47 920
[10]Heidbrink W W, Park J M, Murakami M, Petty C C, Holcomb C and van Zeeland M A 2009 Phys. Rev. Lett. 103 175001
[11]Lewandowski J L V, Rewoldt G, Ethier S, Lee W W and Lin Z 2006 Phys. Plasmas 13 072306
[12]Rewoldt G, Lin Z and Idomura Y 2007 Comput. Phys. Commun. 177 775
[13]Lang J Y, Parker S E and Chen Y 2008 Phys. Plasmas 15 055907
[14]Carreras B A 1997 IEEE Trans. Plasma Sci. 25 1281
[15]Rhodes T L, Peebles W A, van Zeeland M A et al 2007 Phys. Plasmas 14 056117
[16]Conway G D, Angioni C, Dux R, Ryter F, Peeters A G, Schirmer J, Troester C et al 2006 Nucl. Fusion 46 S799
[17]Xiao Y, Holod I, Zhang W, Klasky S and Lin Z 2010 Phys. Plasmas 17 022302
[18]Merz F and Jenko F 2010 Nucl. Fusion 50 054005
[19]Dannert T and Jenko F 2005 Phys. Plasmas 12 072309
[20]Lang J, Chen Y and Parker S E 2007 Phys. Plasmas 14 082315
[21]Lin Z, Hahm T, Lee W, Tang W and Diamond P 1999 Phys. Rev. Lett. 83 3645
[22]Conway G D 2008 Plasma Phys. Control. Fusion 50 124026
[23]Hu W, Feng H Y and Dong C 2018 Chin. Phys. Lett. 35 105201
[24]Pace D C, Austin M E, Bass E M, Budny R V, Heidbrink W W, Hillesheim J C, Holcomb C T, Gorelenkova M, Grierson B A, McCune D C, McKee G R, Muscatello C M, Park J M, Petty C C, Rhodes T L, Staebler G M, Suzuki T, Van Zeel, M A, Waltz R E, Wang G, White A E, Yan Z, Yuan X and Zhu Y B 2013 Phys. Plasmas 20 056108
[25]Lin Z, Ethier S, Hahm T and Tang W 2002 Phys. Rev. Lett. 88 195004
[26]Lin Z, Holod I, Chen L, Diamond P, Hahm T and Ethier S 2007 Phys. Rev. Lett. 99 265003
Related articles from Frontiers Journals
[1] Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas[J]. Chin. Phys. Lett., 2018, 35(10): 085201
[2] Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 085201
[3] Zhen-Wei Xia, Chun-Hua Li, Dan-Dan Zou, Wei-Hong Yang. Helical Mode Absolute Statistical Equilibrium of Ideal Three-Dimensional Hall Magnetohydrodynamics[J]. Chin. Phys. Lett., 2017, 34(1): 085201
[4] ZHANG Xiao-Hui, LIU A-Di, ZHOU CHU, HU Jian-Qiang, WANG Ming-Yuan, YU Chang-Xuan, LIU Wan-Dong, LI Hong, LAN Tao, XIE Jin-Lin. Comparison of Three Methods in Extracting Coherent Modes from a Doppler Backscatter System[J]. Chin. Phys. Lett., 2015, 32(12): 085201
[5] WANG Guan-Qiong, MA Jun, WEILAND J., ZAGORODNY A.. Excitation of Zonal Flows by ion-temperature-gradient Modes Excited by the Fluid Resonance[J]. Chin. Phys. Lett., 2015, 32(11): 085201
[6] SUN Tian-Tian, CHEN Shao-Yong, WANG Zhan-Hui, PENG Xiao-Dong, HUANG Jie, MOU Mao-Lin, TANG Chang-Jian. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas[J]. Chin. Phys. Lett., 2015, 32(03): 085201
[7] A. A. Azooz,Y. A. Al-Jawaady,Z. T. Ali. Pressure and Discharge-Voltage Dependence of Self-Sustaining Pulses in Air-Glow Discharge[J]. Chin. Phys. Lett., 2012, 29(5): 085201
[8] CHEN Ran, XIE Jin-Lin**, YU Chang-Xuan, LIU A-Di, LAN Tao, ZHANG Shou-Biao, HU Guang-Hai, LI Hong, LIU Wan-Dong . Identification of Low-Frequency Zonal Flow in a Linear Magnetic Plasma Device[J]. Chin. Phys. Lett., 2011, 28(2): 085201
[9] XU Hui, SHENG Zheng-Ming, ZHENG Jun, XIA Yun-Jie. Generation of Broadband High Harmonics through Linear Mode Conversion in Inhomogeneous Plasmas[J]. Chin. Phys. Lett., 2010, 27(4): 085201
[10] DONG Li-Fang, FAN Wei-Li, WANG Hui-Juan, ZHANG Qing-Li, WANG Long. Nonlinear Interaction and Coherent Structure in Tokamak Plasma Turbulence[J]. Chin. Phys. Lett., 2006, 23(11): 085201
[11] LU Rong-Hua, PAN Ge-Sheng, WANG Zhi-Jiang, WEN Yi-Zhi, LIU Wan-Dong, WAN Shu-De, YU Chang-Xuan, WANG Jun, XIAO De-Long, XU Min. Effects of Dual-Electrode Biasing on Er in a Toroidal Plasma[J]. Chin. Phys. Lett., 2005, 22(6): 085201
[12] LIU Feng, DONG Jia-Qi, GAO Zhe. Electron Temperature Gradient Driven Instability in High Beta Plasmas of a Sheared Slab[J]. Chin. Phys. Lett., 2005, 22(5): 085201
[13] PANG Jin-Qiao, WU Ze-Qing, YAN Jun, HAN Guo-Xing. Theoretical Calculations of Opacity for Non-Local-Thermodynamic-Equilibrium Plasmas[J]. Chin. Phys. Lett., 2004, 21(10): 085201
[14] XU Guo-Sheng, WAN Bao-Nian, SONG-Mei. Naturally Occurring Velocity Shear Layer at the Plasma Edge of HT-7 Tokamak[J]. Chin. Phys. Lett., 2004, 21(1): 085201
[15] XU Guo-Sheng, WAN Bao-Nian, SONG-Mei. First Measurement of the Magnetic Turbulence Induced Reynolds Stress in a Tokamak[J]. Chin. Phys. Lett., 2003, 20(12): 085201
Viewed
Full text


Abstract