Chin. Phys. Lett.  2019, Vol. 36 Issue (8): 080303    DOI: 10.1088/0256-307X/36/8/080303
GENERAL |
Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution
Si-Yuan Liu1,2,3**, Feng-Lin Wu1,2,3, Yao-Zhong Zhang4, Heng Fan1,2
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Institute of Modern Physics, Northwest University, Xi'an 710127
3Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127
4School of Mathematics and Physics, The University of Queensland, Brisbane 4072, Australia
Cite this article:   
Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang et al  2019 Chin. Phys. Lett. 36 080303
Download: PDF(746KB)   PDF(mobile)(742KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The definitions of strong superadditive deficit for relative entropy coherence and monogamy deficit of measurement-dependent global quantum discord are proposed. The equivalence between them is proved, which provides a useful criterion for the validity of the strong superadditive inequality of relative entropy coherence. In addition, the strong superadditive deficit of relative entropy coherence is proved to be greater than or equal to zero under the condition that bipartite measurement-dependent global quantum discord (GQD) does not increase under the discarding of subsystems. Using the Monte Carlo method, it is shown that both the strong superadditive inequality of relative entropy coherence and the monogamy inequality of measurement-dependent GQD are established under general circumstances. The bipartite measurement-dependent GQD does not increase under the discarding of subsystems. The multipartite situation is also discussed in detail.
Received: 24 April 2019      Published: 22 July 2019
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11775177, 11775178, 11647057 and 11705146, the Special Research Funds of Shaanxi Province Department of Education under Grant No 16JK1759, the Basic Research Plan of Natural Science in Shaanxi Province under Grant No 2018JQ1014, the Major Basic Research Program of Natural Science of Shaanxi Province under Grant No 2017ZDJC-32, the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province under Grant No 2017KCT-12, the Northwest University Scientific Research Funds under Grant No 15NW26, the Double First-Class University Construction Project of Northwest University, and the Australian Research Council through Discovery Projects under Grant No DP190101529.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/8/080303       OR      https://cpl.iphy.ac.cn/Y2019/V36/I8/080303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Si-Yuan Liu
Feng-Lin Wu
Yao-Zhong Zhang
Heng Fan
[1]Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[2]London F and London H 1935 Proc. R. Soc. A 149 71
[3]Cwiklinski P, Studzinski M, Horodecki M and Oppenheim J 2015 Phys. Rev. Lett. 115 210403
[4]Nielsen M A and Chuang L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[5]Shi H L, Liu S Y, Wang X H, Yang W L, Yang Z Y and Fan H 2017 Phys. Rev. A 95 032307
[6]Hou J X, Liu S Y, Wang X H and Yang W L 2017 Phys. Rev. A 96 042324
[7]Su Y L, Liu S Y, Wang X H, Fan H and Yang W L 2018 Sci. Rep. 8 11081
[8]Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[9]Bagan E, Bergou J A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406
[10]Jha P K, Mrejen M, Kim J, Wu C, Wang Y, Rostovtsev Y V and Zhang X 2016 Phys. Rev. Lett. 116 165502
[11]Kammerlander P and Anders J 2016 Sci. Rep. 6 22174
[12]Zhang F G and Li Y M 2018 Chin. Phys. B 27 090301
[13]Yi T C, Ding Y R, Ren J, Wang Y M and You W L 2018 Acta Phys. Sin. 67 140303 (in Chinese)
[14]Gao Q, Gao D Y and Xia Y J 2018 Chin. Phys. B 27 060304
[15]Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
[16]Ma J J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
[17]Zhang Y R, Shao L H, Li Y and Fan H 2016 Phys. Rev. A 93 012334
[18]Cheng S and Hall M J W 2015 Phys. Rev. A 92 042101
[19]Singh U, Zhang L and Pati A K 2016 Phys. Rev. A 93 032125
[20]Rana S, Parashar P and Lewenstein M 2016 Phys. Rev. A 93 012110
[21]Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[22]Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[23]Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[24]Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402
[25]Streltsov A, Chitambar E, Rana S, Bera M N, Winter A and Lewenstein M 2016 Phys. Rev. Lett. 116 240405
[26]Killoran N, Steinhoff F E S and Plenio M B 2016 Phys. Rev. Lett. 116 080402
[27]Chitambar E and Hsieh M H 2016 Phys. Rev. Lett. 117 020402
[28]Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[29]Ma T, Zhao M J, Fei S M and Long G L 2016 Phys. Rev. A 94 042312
[30]Xi Z J, Li Y M and Fan H 2015 Sci. Rep. 5 10922
[31]Ma T, Zhao M J, Zhang H J, Fei S M and Long G L 2017 Phys. Rev. A 95 042328
[32]Liu S Y, Zhang Y R, Zhao L M, Yang W L and Fan H 2014 Ann. Phys. 348 256
[33]Acín A, Andrianov A, Costa L, Jané E, Latorre J I and Tarrach R 2000 Phys. Rev. Lett. 85 1560
[34]Acín A, Bruß D, Lewenstein M and Sanpera A 2001 Phys. Rev. Lett. 87 040401
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 080303
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 080303
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 080303
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 080303
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 080303
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 080303
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 080303
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 080303
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 080303
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 080303
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 080303
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 080303
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 080303
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 080303
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 080303
Viewed
Full text


Abstract