Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 078301    DOI: 10.1088/0256-307X/36/7/078301
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Mechanism for the Self-Assembly of Hollow Micelles from Rod-Coil Block Copolymers
Lingyun Zhang**
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Lingyun Zhang 2019 Chin. Phys. Lett. 36 078301
Download: PDF(600KB)   PDF(mobile)(604KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The mechanism for the self-assembly of hollow micelles from rod-coil diblock copolymers is proposed. In a coil-selective solvent, the diblock copolymers self-assemble into a layered structure. It is assumed that the rigid rods form an elastic shell whose properties are dictated by a bending energy. For a hollow micelle, the coils outside the micelle form a brush, while the coils inside the micelle can be in two different states, a brush or an adsorption layer, corresponding to symmetric or asymmetric configurations, respectively. The total energy density of a hollow micelle is calculated by combining the interfacial energy, elastic bending energy and the stretching energy of the brushes. For the asymmetric configuration with a polymer brush on one side, the competition between the elastic bending energy and the brush stretching energy leads to a finite spontaneous curvature, stabilizing hollow spherical micelles. Comparison of the free energy density for different geometries demonstrates that transitions for the different geometry micelles are controlled by the degree of polymerization of the coils and the length of the rods. These results are in agreement with the experimental results.
Received: 16 April 2019      Published: 20 June 2019
PACS:  83.10.Tv (Structural and phase changes)  
  61.82.Pv (Polymers, organic compounds)  
  82.35.Jk (Copolymers, phase transitions, structure)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/7/078301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I7/078301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lingyun Zhang
[1]Jenekhe S A and Chen X L 1998 Science 279 1903
[2]Kresge C T, Leonowics M E, Woth W J, Vartuli J C and Beck J S 1992 Nature 359 710
[3]Hamley I W 1998 The Physics of Block Copolymers (Oxford: Oxford University Press )
[4]Thurn-Albrecht T, Schotter J, Kastle G A, Emley N, Shibauchi T, Krasin-Elbaum I, Gaurini K, Black C T, Tuominen M T and Russell T P 2000 Science 290 2126
[5]Segalman R A, McCulloch B, Kirmayer S and Urban J J 2009 Macromolecules 42 9205
[6]Kato T, Mizoshita N and Kishimoto K 2006 Angew. Chem. Int. Ed. 45 38
[7]Ries G 2003 Prog. Polym. Sci. 28 1107
[8]Zhang L and Eisenberg A 1996 J. Am. Chem. Soc. 118 3168
[9]Jain S and Bates F S 2003 Science 300 460
[10]Wang C Y and Lodge T P 2002 Macromolecules 35 841
[11]Zhang L and Wang P Y 2011 Eur. Phys. J. E 34 43
[12]Geng X B, Pan J X, Zhang J J, Sun M N and Cen J Y 2018 Chin. Phys. B 27 058102
[13]Jenekhe S A and Chen X L 1999 Science 283 372
[14]Semenov A N 1985 Sov. Phys. JETP 61 733
[15]Shi A C, Noolandi J and Hoffmann H 1994 Macromolecules 27 6661
[16]Zhang Q Y and Xiang X 2013 Chin. Phys. B 22 038201
[17]Boal D 2001 Mechanics of the Cell (Cambridge: Cambridge University Press)
[18]Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z and Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese)
[19]Zhang L, Wang P Y and Shi A C 2009 Sci. Chin. G 39 518
Related articles from Frontiers Journals
[1] Guanying Xing, Weixian Zhao, Run Hu, and Xiaobing Luo. Spatiotemporal Modulation of Thermal Emission from Thermal-Hysteresis Vanadium Dioxide for Multiplexing Thermotronics Functionalities[J]. Chin. Phys. Lett., 2021, 38(12): 078301
[2] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 078301
[3] Duan Kang, Ye-Xin Feng, Ying Yuan, Qi-Jun Ye, Feng Zhu, Hao-Yan Huo, Xin-Zheng Li, Xiang Wu. Hydrogen-Bond Symmetrization of $\delta$-AlOOH[J]. Chin. Phys. Lett., 2017, 34(10): 078301
[4] Qiu-Xue Jin, Bo Liu, Yan Liu, Wei-Wei Wang, Heng Wang, Zhen Xu, Dan Gao, Qing Wang, Yang-Yang Xia, Zhi-Tang Song, Song-Lin Feng. Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling[J]. Chin. Phys. Lett., 2016, 33(09): 078301
[5] FAN Xi, CHEN Hou-Peng, WANG Qian, WANG Yue-Qing, LV Shi-Long, LIU Yan, SONG Zhi-Tang, FENG Gao-Ming, LIU Bo. Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays[J]. Chin. Phys. Lett., 2015, 32(06): 078301
[6] ZHENG Jie, FU Wei-Juan, ZHOU Lu-Wei. Shear Banding Driven by Electric Field and Shear Flow[J]. Chin. Phys. Lett., 2013, 30(9): 078301
[7] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin, FENG Song-Lin. Three-Dimensional Finite Element Simulations for the Thermal Characteristics of PCRAMs with Different Buffer Layer Materials[J]. Chin. Phys. Lett., 2010, 27(8): 078301
[8] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, FENG Song-Lin. Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling[J]. Chin. Phys. Lett., 2009, 26(11): 078301
[9] DING Sheng, SONG Zhi-Tang, LIU Bo, ZHU Min, CHEN Xiao-Gang, CHEN Yi-Feng, SHEN Ju, FU Cong, FENG Song-Lin. A 0.18-μm 3.3V 16k Bits 1R1T Phase Change Random Access Memory (PCRAM) Chip[J]. Chin. Phys. Lett., 2008, 25(10): 078301
[10] GONG Yue-Feng, LING Yun, SONG Zhi-Tang, FENG Song-Lin. Simulation of Phase-Change Random Access Memory with Ring-Type Contactor for Low Reset Current by Finite Element Modelling[J]. Chin. Phys. Lett., 2008, 25(9): 078301
[11] ZU Fang-Qiu, YU Jin, XU Wei, ZHANG Yan, YANG Hui-Zhen. Reversibility of Temperature-Induced Liquid Transition in Pb26Sn42Bi32 Melt: Experimental Evidence with Electrical Property[J]. Chin. Phys. Lett., 2008, 25(4): 078301
[12] LI Xian-Fen, CHEN Hong-Sheng, ZU Fang-Qiu, CHEN Zhi-Hao, SUN Qi-Qiang, GUO Lei-Lei. Kinetics of Liquid Structure Transition of Sn--(40wt%)Bi Melt[J]. Chin. Phys. Lett., 2008, 25(1): 078301
[13] ZHU Yue-Jin, MA Yu-Qiang. Ordered Structures of a Binary Mixture with Mobile Particles System[J]. Chin. Phys. Lett., 2003, 20(5): 078301
Viewed
Full text


Abstract