Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 077401    DOI: 10.1088/0256-307X/36/7/077401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ionic-Liquid-Gating Induced Protonation and Superconductivity in FeSe, FeSe$_{0.93}$S$_{0.07}$, ZrNCl, 1$T$-TaS$_2$ and Bi$_2$Se$_3$
Yi Cui1,2†, Ze Hu2†, Jin-Shan Zhang1**, Wen-Long Ma3, Ming-Wei Ma3, Zhen Ma4, Cong Wang2, Jia-Qiang Yan5, Jian-Ping Sun6, Jin-Guang Cheng6, Shuang Jia3,7**, Yuan Li3,7, Jin-Sheng Wen4,8, He-Chang Lei2, Pu Yu9,7, Wei Ji2, Wei-Qiang Yu2**
1School of Mathematics and Physics, North China Electric Power University, Beijing 102206
2Department of Physics, and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University, Beijing 100872
3International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871
4National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093
5Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
6Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
7Collaborative Innovation Center of Quantum Matter, Beijing 100871
8Innovative Center for Advanced Microstructures, Nanjing University, Nanjing 210093
9State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
Yi Cui, Ze Hu, Jin-Shan Zhang et al  2019 Chin. Phys. Lett. 36 077401
Download: PDF(901KB)   PDF(mobile)(903KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report protonation in several compounds by an ionic-liquid-gating method, under optimized gating conditions. This leads to single superconducting phases for several compounds. Non-volatility of protons allows post-gating magnetization and transport measurements. The superconducting transition temperature $T_{\rm c}$ is enhanced to 43.5 K for FeSe$_{0.93}$S$_{0.07}$, and 41 K for FeSe after protonation. Superconducting transitions with $T_{\rm c} \sim 15$ K for ZrNCl, $\sim$7.2 K for 1$T$-TaS$_2$, and $\sim$3.8 K for Bi$_2$Se$_3$ are induced after protonation. Electric transport in protonated FeSe$_{0.93}$S$_{0.07}$ confirms high-temperature superconductivity. Our $^{1}$H nuclear magnetic resonance (NMR) measurements on protonated FeSe$_{1-x}$S$_{x}$ reveal enhanced spin-lattice relaxation rate $1/^{1}T_1$ with increasing $x$, which is consistent with the LDA calculations that H$^{+}$ is located in the interstitial sites close to the anions.
Received: 25 May 2019      Published: 29 May 2019
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  78.30.cd (Solutions and ionic liquids)  
  74.25.nj (Nuclear magnetic resonance)  
Fund: Work at RUC was supported by the National Natural Science Foundation of China under Grant Nos 51872328, 11622437, 11574394, 11774423 and 11822412, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB30000000, the Ministry of Science and Technology of China under Grant No 2016YFA0300504, the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (RUC) (15XNLQ07, 18XNLG14, 19XNLG17). SJ was supported by the National Natural Science Foundation of China under Grant Nos 11774007 and U1832214. YC was supported by the Outstanding Innovative Talents Cultivation Funded Programs 2018 of Renmin University of China. JQY was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/7/077401       OR      https://cpl.iphy.ac.cn/Y2019/V36/I7/077401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi Cui
Ze Hu
Jin-Shan Zhang
Wen-Long Ma
Ming-Wei Ma
Zhen Ma
Cong Wang
Jia-Qiang Yan
Jian-Ping Sun
Jin-Guang Cheng
Shuang Jia
Yuan Li
Jin-Sheng Wen
He-Chang Lei
Pu Yu
Wei Ji
Wei-Qiang Yu
[1]Ahn C H, Bhattacharya A, Ventra M D, Eckstein J N, Frisbie C D, Gershenson M E, Goldman A M, Inoue I H, Mannhart J, Millis A J, Morpurgo A F, Natelson D and Triscone J M 2006 Rev. Mod. Phys. 78 1185
[2]Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y and Kawasaki M 2008 Nat. Mater. 7 855
[3]Saito Y, Kasahara Y, Ye J, Iwasa Y and Nojima T 2015 Science 350 409
[4]Ye J T, Inoue S, Kobayashi K, Kasahara Y, Yuan H T, Shimotani H and Iwasa Y 2010 Nat. Mater. 9 125
[5]Bollinger A T, Dubuis G, Yoon J, Pavuna D, Misewich J and Bozǒvi? I 2011 Nature 472 458
[6]Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193
[7]Li L J, O'Farrell1 E C T, Loh K P, Eda G, ?zyilmaz B and Castroneto A H 2016 Nature 529 185
[8]Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353
[9]Miyakawa T, Shiogai J, Shimizu S, Matsumoto M, Ito Y, Harada T, Fujiwara K, Nojima T, Itoh Y, Aida T, Iwasa Y and Tsukazaki A 2018 Phys. Rev. Mater. 2 031801
[10]Lei B, Wang N Z, Shang C, Meng F B, Ma L K, Luo X G, Wu T, Sun Z, Wang Y, Jiang Z, Mao B H, Liu Z, Yu Y J, Zhang Y B and Chen X H 2017 Phys. Rev. B 95 020503
[11]Lu N, Zhang P, Zhang Q, Qiao R, He Q, Li H B , Wang Y, Guo J, Zhang D, Duan Z, Li Z, Wang M, Yang S, Yan M, Arenholz E, Zhou S, Yang W, Gu L, Nan C W , Wu J, Tokura Y and Yu P 2017 Nature 546 124
[12]Cui Y, Zhang G, Li H, Lin H, Zhu X, Wen H H , Wang G, Sun J, Ma M, Li Y, Gong D, Xie T, Gu Y, Li S, Luo H, Yu P and Yu W 2018 Sci. Bull. 63 11
[13]B?hmer A E, Hardy F, Eilers F, Ernst D, Adelmann P, Schweiss P, Wolf T and Meingast C 2013 Phys. Rev. B 87 180505
[14]Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y and Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139
[15]Chen X, Koiwasaki T and Yamanaka S 2002 J. Phys.: Condens. Matter 14 11209
[16]Kuwabara M, Tomita M, Hashimoto H and Endoh H 1986 Phys. Status Solidi A 96 39
[17]Sultana R, Awana G, Pal B, Maheshwari P K, Mishra M, Gupta G, Gupta A, Thirupathaiah S and Awana V P S 2017 J. Supercond. Novel Magn. 30 2031
[18]Borg C K H, Zhou X, Eckberg C, Campbell D J, Saha S R, Paglione J and Rodriguez E E 2016 Phys. Rev. B 93 094522
[19]Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630
[20]Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q , Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun. 7 12146
[21]Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M and Chen X 2010 Phys. Rev. B 82 180520
[22]Hatakeda T, Noji T, Kawamata T, Kato M and Koike Y 2013 J. Phys. Soc. Jpn. 82 123705
[23]Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G and Zhao Z 2015 J. Am. Chem. Soc. 137 66
[24]Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
[25]Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. Lett. 116 077002
[26]Wang Q Y , Li Z, Zhang W H , Zhang Z C , Zhang J S , Li W, Ding H, Ou Y B , Deng P, Chang K, Wen J, Song C L , He K, Jia J F , Ji S H , Wang Y Y , Wang L L , Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[27]Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T and Takano Y 2009 J. Phys. Soc. Jpn. 78 074712
[28]Taguchi Y, Kitora A and Iwasa Y 2006 Phys. Rev. Lett. 97 107001
[29]Zhang S, Gao M R , Fu H Y , Wang X M , Ren Z A and Chen G F 2018 Chin. Phys. Lett. 35 097401
[30]Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
[31]Thomson R E, Burk B, Zettl A and Clarke J 1994 Phys. Rev. B 49 16899
[32]Liu Y, Ang R, Lu W J, Song W H, Li L J and Sun Y P 2013 Appl. Phys. Lett. 102 192602
[33]Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[34]Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[35]Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001
[36]Liu Z, Yao X, Shao J, Zuo M, Pi L, Tan S, Zhang C and Zhang Y 2015 J. Am. Chem. Soc. 137 10512
Related articles from Frontiers Journals
[1] Xiaolei Yi, Xiangzhuo Xing, Yan Meng, Nan Zhou, Chunlei Wang, Yue Sun, and Zhixiang Shi. Anomalous Second Magnetization Peak in 12442-Type RbCa$_2$Fe$_4$As$_4$F$_2$ Superconductors[J]. Chin. Phys. Lett., 2023, 40(2): 077401
[2] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 077401
[3] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 077401
[4] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 077401
[5] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 077401
[6] Shuo Li, Shuo Han, Shaohua Yan, Yi Cui, Le Wang, Shanmin Wang, Shanshan Chen, Hechang Lei, Feng Yuan, Jinshan Zhang, and Weiqiang Yu. Pressure-Induced Superconductivity in Flat-Band Kagome Compounds Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$[J]. Chin. Phys. Lett., 2022, 39(6): 077401
[7] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 077401
[8] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 077401
[9] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 077401
[10] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 077401
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 077401
[12] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 077401
[13] Qiong Wu, Huaxue Zhou, Yanling Wu, Lili Hu, Shunli Ni, Yichao Tian, Fei Sun, Fang Zhou, Xiaoli Dong, Zhongxian Zhao, and Jimin Zhao. Ultrafast Quasiparticle Dynamics and Electron-Phonon Coupling in (Li$_{0.84}$Fe$_{0.16}$)OHFe$_{0.98}$Se[J]. Chin. Phys. Lett., 2020, 37(9): 077401
[14] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 077401
[15] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 077401
Viewed
Full text


Abstract