Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 070501    DOI: 10.1088/0256-307X/36/7/070501
GENERAL |
A New Model of Ferroelectric Phase Transition with Neglectable Tunneling Effect
Hong-Mei Yin1,2, Heng-Wei Zhou2, Yi-Neng Huang1,2**
1National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093
2Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000
Cite this article:   
Hong-Mei Yin, Heng-Wei Zhou, Yi-Neng Huang 2019 Chin. Phys. Lett. 36 070501
Download: PDF(921KB)   PDF(mobile)(908KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Due to the obvious deviations of the existing theoretical models from the experimental results of ferroelectric phase transition, a new model is proposed on the basis of the coupling between spontaneous polarization and spontaneous strain in ferroelectrics. The spontaneous polarization and specific heat of ferroelectric phase transition predicted by the model are in better agreement with the corresponding data of triglyceride sulfate, a typical ferroelectric. In addition, the model predicts a new type of ferroelectric in which a phase transition and a phase-like transition coexist.
Received: 12 February 2019      Published: 20 June 2019
PACS:  05.70.Fh (Phase transitions: general studies)  
  77.80.B- (Phase transitions and Curie point)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11664042.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/7/070501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I7/070501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Mei Yin
Heng-Wei Zhou
Yi-Neng Huang
[1]Scott J F 2007 Science 315 954
[2]Shin Y H, Grinberg I, Chen I W and Rappe A M 2007 Nature 449 881
[3]Ahart M, Somayazulu M, Cohen R E, Ganesh P, Dera P, Mao H, Hemley R J, Ren Y, Liermann P and Wu Z G 2008 Nature 451 545
[4]Horiuchi S, Tokunaga Y, Giovannetti G, Picozzi S, Itoh H, Shimano R, Kumai R and Tokura Y 2010 Nature 463 789
[5]Gu Z Q, Pandya S, Samanta A, Liu S, Xiao G, Meyers C J G, Damodaran A R, Barak H, Dasgupta A, Saremi S, Polemi A, Wu L Y, Podpirka A A, Will-Cole A, Hawley C J, Davies P K, York R A, Grinberg I, Martin L W and Spanier J E 2018 Nature 560 622
[6]Kim T Y, Kim S K and Kim S 2018 Nano Convergence 5 30
[7]Grinberg I, West D V, Torres M, Gou G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E and Rappe A M 2013 Nature 503 509
[8]Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y and Kitô H 2005 Nature 436 1136
[9]Mitsui T, Tatsuzaki I, Nakamura E and Ishibashi Y 1976 An introduction to the Physics of Ferroelectrics (New York: Gordon and Breach Science Publishers)
[10]Mistewicz K 2018 J. Nanomater. 2018 1
[11]Liu Y, Aziguli H, Zhang B, Xu W H, Lu W C, Bernholc J and Wang Q 2018 Nature 562 96
[12]Zhang J L, Li Y Q, Zhao X Y and Huang Y N 2012 Acta Phys. Sin. 61 140379 (in Chinese)
[13]Wang X W and Xu H H 2011 Acta Phys. Sin. 60 30507 (in Chinese)
[14]Zhao L, Tu Y S, Wang C L and Fang H P 2016 Chin. Phys. Lett. 33 038201
[15]Deng Y B and Gu Q 2014 Chin. Phys. Lett. 31 020504
[16]Rao Z H, Liu X J, Zhang R K, Li X, Wei C X, Wang H D and Li Y M 2014 Chin. Phys. Lett. 31 010501
[17]Shi L W, Duan Y F, Yang X Q and Tang G 2011 Chin. Phys. Lett. 28 100503
[18]Ge H X, Wu S Z, Cheng R J and Lo S M 2011 Chin. Phys. Lett. 28 090501
[19]Landau H G 1937 Chem. Rev. 21 245
[20]Landau H G 1939 J. Chem. Phys. 7 112
[21]Weiss P 1907 J. Phys. 6 661
[22]Ising E 1925 Z. Phys. 31 253
[23]Blinc R and žekš B 1972 Adv. Phys. 21 693
[24]de Gennes P G 1963 Solid State Commun. 1 132
[25]Wang Y L and Cooper B R 1968 Phys. Rev. 172 539
[26]Pfeuty P and Elliott R J 1971 J. Phys. C 4 2370
[27]Cochran W 1963 Rep. Prog. Phys. 26 1
[28]Devonshire A F 1949 Philos. Mag. 40 1040
[29]Rice O K 1954 J. Chem. Phys. 22 1535
[30]Domb C 1956 J. Chem. Phys. 25 783
[31]Baker G A and Essam J W 1970 Phys. Rev. Lett. 24 447
[32]Salinas S R 1974 J. Phys. C 7 241
[33]Wang C L, Qin Z K and Lin D L 1989 Phys. Rev. B 40 680
[34]Shibuya I and Mitsui T 1961 J. Phys. Soc. Jpn. 16 479
[35]Saxena A, Gupta V and Sreenivas K 2001 Mater. Sci. Eng. B 79 91
[36]Gallardo M C, Martín-Olalla J M, Romero F J, Del Cerro J and Fugiel B 2009 J. Phys.: Condens. Matter 21 025902
[37]Cohen R E 1992 Nature 358 136
[38]Lines M E and Glass A M 1977 Principles and Applications Ferroelectrics and Related Materials (Oxford: Clarendon press)
[39]Bragg W L and Williams E J 1935 Proc. R. Soc. A 151 540
[40]Bragge W L and Williams E J 1934 Proc. R. Soc. A 145 699
[41]Huang Y N, Wang Y N and Shen H M 1992 Phys. Rev. B 46 3290
[42]Huang Y N, Li X, Ding Y, Wang Y N, Shen H M, Zhang Z F, Fang C S, Zhuo S H and Fung P C W 1997 Phys. Rev. B 55 16159
Related articles from Frontiers Journals
[1] Xiao-Qi Han, Sheng-Song Xu, Zhen Feng, Rong-Qiang He, and Zhong-Yi Lu. Framework for Contrastive Learning Phases of Matter Based on Visual Representations[J]. Chin. Phys. Lett., 2023, 40(2): 070501
[2] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 070501
[3] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 070501
[4] Yasuomi D. Sato. Frequency Switches at Transition Temperature in Voltage-Gated Ion Channel Dynamics of Neural Oscillators[J]. Chin. Phys. Lett., 2018, 35(5): 070501
[5] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 070501
[6] Liang Zhao, Yu-Song Tu, Chun-Lei Wang, Hai-Ping Fang. Comparisons of Criteria for Analyzing the Dynamical Association of Solutes in Aqueous Solutions[J]. Chin. Phys. Lett., 2016, 33(03): 070501
[7] GE Hong-Xia, MENG Xiang-Pei, ZHU Ke-Qiang, CHENG Rong-Jun. The Stability Analysis for an Extended Car Following Model Based on Control Theory[J]. Chin. Phys. Lett., 2014, 31(08): 070501
[8] DENG Yi-Bo, GU Qiang. Berezinskii–Kosterlitz–Thouless Transition in a Two-Dimensional Random-Bond XY Model on a Square Lattice[J]. Chin. Phys. Lett., 2014, 31(2): 070501
[9] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 070501
[10] WANG Si-Ying, DUAN Wen-Gang, YIN Xie-Zhen. Transition Mode of Two Parallel Flags in Uniform Flow[J]. Chin. Phys. Lett., 2013, 30(11): 070501
[11] MENG Qing-Kuan, FENG Dong-Tai, GAO Xu-Tuan, MEI Yu-Xue. Generalized Zero-Temperature Glauber Dynamics in a Two-Dimensional Square Lattice[J]. Chin. Phys. Lett., 2012, 29(12): 070501
[12] HU Mao-Bin, Henry Y.K. Lau, LING Xiang, JIANG Rui. Pheromone Static Routing Strategy for Complex Networks[J]. Chin. Phys. Lett., 2012, 29(12): 070501
[13] LIU You-Jun, ZHANG Hai-Lin, HE Li. Cooperative Car-Following Model of Traffic Flow and Numerical Simulation[J]. Chin. Phys. Lett., 2012, 29(10): 070501
[14] LI Xiang, DONG Li-Yun. Modeling and Simulation of Pedestrian Counter Flow on a Crosswalk[J]. Chin. Phys. Lett., 2012, 29(9): 070501
[15] YU Wing-Chi, WANG Li-Gang, GU Shi-Jian, and LIN Hai-Qing. Scaling of the Leading Response in Linear Quench Dynamics in the Quantum Ising Model[J]. Chin. Phys. Lett., 2012, 29(8): 070501
Viewed
Full text


Abstract