Chin. Phys. Lett.  2019, Vol. 36 Issue (4): 044203    DOI: 10.1088/0256-307X/36/4/044203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb$_{3}$Sc$_{2}$Al$_{3}$O$_{12}$ Crystal Investigated by Terahertz Time-Domain Spectroscopy
Ju-Geng Li1, Sen-Miao Yang1, Xin Chen2, Nai-Feng Zhuang2, Qi-Biao Zhu1, An-Hua Wu3, Xian Lin1, Guo-Hong Ma1,4**, Zuan-Ming Jin1,4**, Jian-Quan Yao5
1Department of Physics, College of Sciences, Shanghai University, Shanghai 200444
2College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108
3Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050
4STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210
5College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Optoelectronics, Tianjin University, Tianjin 300072
Cite this article:   
Ju-Geng Li, Sen-Miao Yang, Xin Chen et al  2019 Chin. Phys. Lett. 36 044203
Download: PDF(855KB)   PDF(mobile)(847KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Terbium scandium aluminum garnet (TSAG) crystals have been widely used in magneto-optical systems. We investigate the complex refractive index of the TSAG crystal in the terahertz frequency range using terahertz (THz) time-domain spectroscopy in the temperature range 100–300 K. It is observed that the refractive index and the absorption coefficient increase with the THz frequency. The refractive index increases with the temperature. We measure the temperature coefficient of the refractive index of the TSAG crystal in the frequency range 0.4–1.4 THz. Furthermore, the loss tangent, i.e., the ratio of experimental values of the imaginary and real part of the dielectric permittivity, is found to be almost independent of frequency. TSAG is very promising for applications in THz optoelectronics because it has a high dielectric constant, low loss, and low thermal coefficient of the dielectric constant.
Received: 18 January 2019      Published: 23 March 2019
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  77.22.Ch (Permittivity (dielectric function))  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.47.-p (Spectroscopy of solid state dynamics)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11604202, 11674213, 61735010 and 51572275, the Shanghai Rising-Star Program under Grant No 18QA1401700, the 'Chen Guang' Project under Grant No 16CG45, the Shanghai Municipal Education Commission, and the Shanghai Education Development Foundation.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/4/044203       OR      https://cpl.iphy.ac.cn/Y2019/V36/I4/044203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ju-Geng Li
Sen-Miao Yang
Xin Chen
Nai-Feng Zhuang
Qi-Biao Zhu
An-Hua Wu
Xian Lin
Guo-Hong Ma
Zuan-Ming Jin
Jian-Quan Yao
[1]Kirilyuk A et al 2010 Rev. Mod. Phys. 82 2731
[2]Jin Z M et al 2010 Appl. Phys. Lett. 96 201108
[3]Stupakiewicz A et al 2017 Nature 542 71
[4]Mikhaylovskiy R V et al 2012 Phys. Rev. B 86 100405
[5]Jin Z M et al 2011 Acta Phys. Sin. 60 087803 (in Chinese)
[6]Bakunov M I et al 2007 Phys. Rev. B 76 085346
[7]Gorelov S D et al 2012 Phys. Rev. B 88 220411(R)
[8]Subkhangulov R R et al 2016 Nat. Photon. 10 111
[9]Lin X et al 2008 Acta Phys. Sin. 67 2378 (in Chinese)
[10]Riordan J A et al 1997 Appl. Phys. Lett. 71 1452
[11]Qiu H S et al 2018 Opt. Lett. 43 1658
[12]Luszcz K, Bonvin E and Novotny L 2018 Appl. Phys. Lett. 113 111103
[13]Chen X, Zhang W H, Wan Q P, Guo F Y, Zhuang N F, Fu H, Xie X T and Chen J Z 2014 Opt. Mater. 37 188
[14]Lu J Y, Fu C and Chen J Z 2011 Appl. Opt. 50 116
[15]Guo F Y, Ru J J, Li H Z, Zhuang N F, Zhao B and Chen J Z 2008 J. Cryst. Growth 310 4390
[16]Kagamitani Y, Pawlak D A, Sato H, Yoshikawa A, Machida H and Fukuda T 2002 Jpn. J. Appl. Phys. 41 6020
[17]Ding S, Zhang Q, Liu W, Luo J, Sun G and Sun D 2018 J. Cryst. Growth 483 110
[18]Mironov E A and Palashov O V 2014 Opt. Express 22 23226
[19]Víllora E G, Molina1 P, Nakamura M, Shimamura K, Hatanaka T, Funaki A and Naoe K 2011 Appl. Phys. Lett. 99 011111
[20]Shi L J, Guo L W, Wei Q K, Song C G, Hu X L, Zhuang N F, Lin S K and Chen J Z 2013 J. Synth. Cryst. 42 1735
[21]Ding J X, Jin W Z, Chen Q M, Hou C H, Yu Y, Su L B, Li C, Zeng F M and Wu A H 2018 Opt. Mater. Express 8 2880
[22]Mikhaylovskiy R V, Hendry E, Ogrin F Y and Kruglyak V V 2013 Phys. Rev. B 87 094414
[23]Neu J and Schmuttenmaer C A 2018 J. Appl. Phys. 124 231101
[24]Hangyo M, Tani M and Nagashima T 2005 J. Infrared Millimeter Terahertz Waves 26 1661
[25]Starobor A V, Snetkov I L and Palashov O V 2018 Opt. Lett. 43 3774
[26]Starobor A, Yasyhara R, Snetkov I, Mironov E and Palashov O 2015 Opt. Mater. 47 112
[27]Berdel K, Rivas J G, Bolívar P H, Maagt P and Kurz H 2005 IEEE Trans. Microwave Theory Tech. 53 1266
[28]Sun Y M, Mao Z L, Hou B L, Liu G Q and Wang L 2007 Chin. Phys. Lett. 24 414
[29]Han X W, Hou L, Yang L, Wang Z Q, Zhao M M and Shi W 2016 Chin. Phys. Lett. 33 120701
[30]Ertuğrul R and Tataroğlu A 2012 Chin. Phys. Lett. 29 077304
[31]Sattar A A and Rahman S A 2003 Phys. Stat. Sol. (a) 200 415
[32]Morimoto T, Kuroda Y and Ohki Y 2017 Jpn. J. Appl. Phys. 56 102601
[33]Kriegel I and Scotognella F 2017 Optik 142 249
[34]Adachi M, Yamahara H, Kawabe S, Matsui H and Tabata H 2014 Phys. Rev. B 89 205124
[35]Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D 43 264001
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 044203
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 044203
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 044203
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 044203
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 044203
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 044203
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 044203
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 044203
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 044203
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 044203
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 044203
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 044203
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 044203
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 044203
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 044203
Viewed
Full text


Abstract