Chin. Phys. Lett.  2019, Vol. 36 Issue (2): 027801    DOI: 10.1088/0256-307X/36/2/027801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Absorptive Fabry–Pérot Interference in a Metallic Nanostructure
Rui Wang1, Yan-Ling Wu2, B. H. Yu2,3, Li-Li Hu2, C. Z. Gu2,3, J. J. Li2,3, Jimin Zhao2,3,4**
1CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
4Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Rui Wang, Yan-Ling Wu, B. H. Yu et al  2019 Chin. Phys. Lett. 36 027801
Download: PDF(1599KB)   PDF(mobile)(1692KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In conventional optics, the Fabry–Pérot (FP) effect is only considered for transparent materials at a macroscopic dimension. Down to the nanometer scale, for absorptive metallic structures, the FP effect has not been directly observed so far. It is unclear whether such a macroscopic effect still holds for a subwavelength metallic nanostructure. Here, we demonstrate the probing of FP interference in a series of nanometer-thick Au films with subwavelength hole arrays. The evidence from both linear and second harmonic generation signals, together with angle-resolved investigations, exhibit features of a FP effect. We also derive an absorptive FP interference equation, which well explains our experimental results. Our results for the first time experimentally confirm the long-persisting hypothesis that the FP effect holds ubiquitously in a metallic nanostructure.
Received: 24 October 2018      Published: 22 January 2019
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  42.65.-k (Nonlinear optics)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2017YFA0303603 and 2016YFA0300303, the National Natural Science Foundation of China under Grant Nos 11504062, 11774408 and 11574383, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB30000000, the Chinese Academy of Sciences Interdisciplinary Innovation Team, and the External Cooperation Program of Chinese Academy of Sciences under Grant No GJHZ1826.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/2/027801       OR      https://cpl.iphy.ac.cn/Y2019/V36/I2/027801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rui Wang
Yan-Ling Wu
B. H. Yu
Li-Li Hu
C. Z. Gu
J. J. Li
Jimin Zhao
[1]Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2]Koerkamp K J K, Enoch S, Segerink F B, van Hulst N F and Kuipers L 2004 Phys. Rev. Lett. 92 183901
[3]Gordon R, Brolo A G, McKinnon A, Rajora A, Leathem B and Kavanagh K L 2004 Phys. Rev. Lett. 92 037401
[4]Degiron A and Ebbesen T W 2005 J. Opt. A: Pure Appl. Opt. 7 S90
[5]Degiron A, Lezec H J, Barnes W L and Ebbesen T W 2002 Appl. Phys. Lett. 81 4327
[6]Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. 86 1114
[7]van Nieuwstadt J A, Sandtke M, Harmsen R H, Segerink F B, Prangsma J C, Enoch S and Kuipers L 2006 Phys. Rev. Lett. 97 146102
[8]Lesuffleur A, Kumar L K S and Gordon R 2007 Phys. Rev. B 75 045423
[9]Lesuffleur A, Kumar L K S and Gordon R 2006 Appl. Phys. Lett. 88 261104
[10]Wang B L, Wang R, Liu R J, Lu X H, Zhao J and Li Z Y 2013 Sci. Rep. 3 2358
[11]Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W and Ming N B 2008 Phys. Rev. Lett. 101 087401
[12]van der Molen K L, Klein K J, Enoch S, Segerink F B, van Hulst N F and Kuipers L 2005 Phys. Rev. B 72 045421
[13]Takakura Y 2001 Phys. Rev. Lett. 86 5601
[14]Yang F and Sambles J R 2002 Phys. Rev. Lett. 89 063901
[15]Cao Q and Lalanne P 2002 Phys. Rev. Lett. 88 057403
[16]Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H and Xu H X 2018 Chem. Rev. 118 2882
[17]Wei H, Zhang S P, Tian X R and Xu H X 2013 Proc. Natl. Acad. Sci. USA 110 4494
[18]Gao F, Li D, Peng R W, Hu Q, Wei K, Wang Q J, Zhu Y Y and Wang M 2009 Appl. Phys. Lett. 95 011104
[19]Wu Y, Wu Q, Sun F, Cheng C, Meng S and Zhao J 2015 Proc. Natl. Acad. Sci. USA 112 11800
[20]Wu R, Zhang Y, Yan S, Bian F, Wang W, Bai X, Lu X, Zhao J and Wang E 2011 Nano Lett. 11 5159
[21]Sun F, Wu Q, Wu Y L, Zhao H, Yi C J, Tian Y C, Liu H W, Shi Y G, Ding H, Dai X, Richard P and Zhao J M 2017 Phys. Rev. B 95 235108
[22]Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K and Zhao J M 2016 Phys. Rev. Lett. 116 107001
[23]Zhao J, Bragas A V, Lockwood D J and Merlin R 2004 Phys. Rev. Lett. 93 107203
[24]Fabry C and Pérot A 1899 Amm. Chim. Phys. 16 7
[25]Verhagen E, Spasenovic M, Polman A and Kuipers L K 2009 Phys. Rev. Lett. 102 203904
[26]Bravo-Abad J, Degiron A, Przybilla F, Genet C, García-Vidal F J, Martín-Moreno L and Ebbesen T W 2006 Nat. Phys. 2 120
[27]Gompf B, Braun J, Weiss T, Giessen H, Dressel M and Hubner U 2011 Phys. Rev. Lett. 106 185501
[28]Bloembergen N, Chang R K, Jha S S and Lee C H 1968 Phys. Rev. 174 813
[29]Liu J T, Wang T B, Li X J and Liu N H 2014 J. Appl. Phys. 115 193511
[30]Lien D H, Kang J S, Aamani M, Chen K, Tosun M, Wang H P, Roy T, Eggleston M S, Wu M C, Dubey M, Lee S C, He J H and Javey A 2015 Nano Lett. 15 1356
[31]Jeong H Y, Kim U J, Kim H, Han G H, Lee H, Kim M S, Jin Y, Ly T H, Lee S Y, Roh Y G, Joo W J, Hwang S W, Part Y and Lee Y H 2016 ACS Nano 10 8192
[32]Wang Q X, Guo J, Ding Z J, Qi D Y, Jiang J Z, Wang Z, Chen W, Xiang Y J, Zhang W J and Wee A T S 2017 Nano Lett. 17 7593
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 027801
[2] Jing Du, Bosai Lyu, Wanfei Shan, Jiajun Chen, Xianliang Zhou, Jingxu Xie, Aolin Deng, Cheng Hu, Qi Liang, Guibai Xie, Xiaojun Li, Weidong Luo, and Zhiwen Shi. Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(5): 027801
[3] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 027801
[4] Sibai Sun, Jianchen Dang, Xin Xie, Yang Yu, Longlong Yang, Shan Xiao, Shiyao Wu, Kai Peng, Feilong Song, Yunuan Wang, Jingnan Yang, Chenjiang Qian, Zhanchun Zuo, and Xiulai Xu. Large Photoluminescence Enhancement by an Out-of-Plane Magnetic Field in Exfoliated WS$_2$ Flakes[J]. Chin. Phys. Lett., 2020, 37(8): 027801
[5] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 027801
[6] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 027801
[7] Lele Wang, Bosai Lyu, Qiang Gao, Jiajun Chen, Zhe Ying, Aolin Deng, Zhiwen Shi. Near-Field Optical Identification of Metallic and Semiconducting Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2020, 37(2): 027801
[8] Pengfei Suo, Li Mao, Hongxing Xu. Quantization Scheme of Surface Plasmon Polaritons in Two-Dimensional Helical Liquids[J]. Chin. Phys. Lett., 2020, 37(1): 027801
[9] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 027801
[10] Jin-Song Huang, Jing-Wen Wang, Yao Wang, Yan-Ling Li. High-Efficiency Quantum Routing in a Multi-Cross-Shaped Waveguide[J]. Chin. Phys. Lett., 2019, 36(3): 027801
[11] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 027801
[12] Shun-yu Zhou, Yan-xia Ye, Kun Ding, De-sheng Jiang, Xiu-ming Dou, Bao-quan Sun. Influence of Polar Pressure Transmission Medium on the Pressure Coefficient of Excitonic Interband Transitions in Monolayer WSe$_{2}$[J]. Chin. Phys. Lett., 2018, 35(6): 027801
[13] Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 027801
[14] Yu-Ting Liu, Li-Peng Hou, Shuang-Yang Zou, Li Zhang, Bian-Bian Liang, Yong-Chang Guo, Arfan Bukhtiar, Muhammad Umair Farooq, Bing-Suo Zou. EMP Formation in the Co(II) Doped ZnTe Nanowires[J]. Chin. Phys. Lett., 2018, 35(3): 027801
[15] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 027801
Viewed
Full text


Abstract