Chin. Phys. Lett.  2019, Vol. 36 Issue (2): 027301    DOI: 10.1088/0256-307X/36/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Phonon Limited Electron Mobility in Germanium FinFETs: Fin Direction Dependence
Ying Jing, Gen-Quan Han**, Yan Liu, Jin-Cheng Zhang, Yue Hao
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
Cite this article:   
Ying Jing, Gen-Quan Han, Yan Liu et al  2019 Chin. Phys. Lett. 36 027301
Download: PDF(819KB)   PDF(mobile)(815KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the phonon limited electron mobility in germanium (Ge) fin field-effect transistors (FinFETs) with fin rotating within (001), (110), and (111)-oriented wafers. The coupled Schrödinger–Poisson equations are solved self-consistently to calculate the electronic structures for the two-dimensional electron gas, and Fermi's golden rule is used to calculate the phonon scattering rate. It is concluded that the intra-valley acoustic phonon scattering is the dominant mechanism limiting the electron mobility in Ge FinFETs. The phonon limited electron motilities are influenced by wafer orientation, channel direction, fin thickness $W_{\rm fin}$, and inversion charge density $N_{\rm inv}$. With the fixed $W_{\rm fin}$, fin directions of $\langle 110\rangle$, $\langle 1\bar{1}2\rangle$ and $\langle \bar{1}10\rangle$ within (001), (110), and (111)-oriented wafers provide the maximum values of electron mobility. The optimized $W_{\rm fin}$ for mobility is also dependent on wafer orientation and channel direction. As $N_{\rm inv}$ increases, phonon limited mobility degrades, which is attributed to electron repopulation from a higher mobility valley to a lower mobility valley as $N_{\rm inv}$ increases.
Received: 26 October 2018      Published: 22 January 2019
PACS:  73.50.-h (Electronic transport phenomena in thin films)  
  73.50.Bk (General theory, scattering mechanisms)  
  73.50.Dn (Low-field transport and mobility; piezoresistance)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61534004, 61604112 and 61622405.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/2/027301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I2/027301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ying Jing
Gen-Quan Han
Yan Liu
Jin-Cheng Zhang
Yue Hao
[1]Shang H et al 2002 IEDM Tech. Dig. 17. 4 441
[2]Wu N et al 2006 IEEE Electron Device Lett. 27 479
[3]Amat E et al 2014 IEEE Trans. Device Mater. Reliab. 14 344
[4]van Dal Mark J H et al 2014 IEEE Trans. Electron Devices 61 430
[5]Kim J et al 2014 IEEE Trans. Electron Devices 35 1185
[6]Poljak M et al 2012 IEEE Trans. Electron Devices 59 1636
[7]Haensch W et al 2006 IBM J. Res. Dev. 50 339
[8]Luisier M and G Klimeck et al 1950 Phys. Rev. B 80 1
[9]Wang J et al 2005 Appl. Phys. Lett. 87 043101
[10]Jin S et al 2006 J. Appl. Phys. 99 123719
[11]Frey M et al 2008 Proc. 38th ESSDERC p 258
[12]Yang Y J et al 2007 Appl. Phys. Lett. 91 102103
[13]Chang L et al 2004 IEEE Trans. Electron Devices 51 1621
[14]Satô T et al 1971 Phys. Rev. B 4 1950
[15]Stern F and Howard W E 1967 Phys. Rev. 163 816
[16]Tanaka H et al 2014 IEEE Trans. Electron Devices 61 1993
[17]Schäffler F 1997 Semicond. Sci. Technol. 12 1515
[18]Niquet Y M et al 2009 Phys. Rev. B 79 245201
[19]Jacoboni C and Reggiani L 1983 Rev. Mod. Phys. 55 645
[20]Rahman A et al 2005 J. Appl. Phys. 97 053702
[21]Jungemann C et al 1993 Solid-State Electron. 36 1529
[22]Esseni D et al 2003 IEEE Trans. Electron Devices 50 2445
[23]Low T et al 2004 Appl. Phys. Lett. 85 2402
[24]Esseni D and Abramo A 2003 IEEE Trans. Electron Devices 50 1665
[25]Gamiz F and Fischetti M V 2001 J. Appl. Phys. 89 5478
Related articles from Frontiers Journals
[1] Lan Dong, Xiangshui Wu, Yue Hu, Xiangfan Xu, and Hua Bao. Suppressed Thermal Conductivity in Polycrystalline Gold Nanofilm: The Effect of Grain Boundary and Substrate[J]. Chin. Phys. Lett., 2021, 38(2): 027301
[2] Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin. Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology[J]. Chin. Phys. Lett., 2020, 37(9): 027301
[3] Qixun Guo, Yu Wu, Longxiang Xu, Yan Gong, Yunbo Ou, Yang Liu, Leilei Li, Yu Yan, Gang Han, Dongwei Wang, Lihua Wang, Shibing Long, Bowei Zhang, Xun Cao, Shanwu Yang, Xuemin Wang, Yizhong Huang, Tao Liu, Guanghua Yu, Ke He, Jiao Teng. Electrically Tunable Wafer-Sized Three-Dimensional Topological Insulator Thin Films Grown by Magnetron Sputtering[J]. Chin. Phys. Lett., 2020, 37(5): 027301
[4] Cheng-Lei Guo, Bin-Bin Wang, Wei Xia, Yan-Feng Guo, Jia-Min Xue. A New Effect of Oxygen Plasma on Two-Dimensional Field-Effect Transistors: Plasma Induced Ion Gating and Synaptic Behavior[J]. Chin. Phys. Lett., 2019, 36(7): 027301
[5] Qin Wang, Peng Yu, Xiangwei Huang, Jie Fan, Xiunian Jing, Zhongqing Ji, Zheng Liu, Guangtong Liu, Changli Yang, Li Lu. Observation of Weak Anti-Localization and Electron-Electron Interaction on Few-Layer 1T$'$-MoTe$_2$ Thin Films[J]. Chin. Phys. Lett., 2018, 35(7): 027301
[6] Wan-Jing Hu, Ling Hu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Jian-Ming Dai, Xue-Bin Zhu, Yu-Ping Sun. Nonvolatile Resistive Switching and Physical Mechanism in LaCrO$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2018, 35(4): 027301
[7] Yan-Yan Zhang, Ran Cheng, Shuang Xie, Shun Xu, Xiao Yu, Rui Zhang, Yi Zhao. Strain Engineering for Germanium-on-Insulator Mobility Enhancement with Phase Change Liner Stressors[J]. Chin. Phys. Lett., 2017, 34(10): 027301
[8] Zhi-Fu Zhu, He-Qiu Zhang, Hong-Wei Liang, Xin-Cun Peng, Ji-Jun Zou, Bin Tang, Guo-Tong Du. Characterization of Interface State Density of Ni/p-GaN Structures by Capacitance/Conductance-Voltage-Frequency Measurements[J]. Chin. Phys. Lett., 2017, 34(9): 027301
[9] Pei-Fu Du, Ping Feng, Xiang Wan, Yi Yang, Qing Wan. Amorphous InGaZnO$_{4}$ Neuron Transistors with Temporal and Spatial Summation Function[J]. Chin. Phys. Lett., 2017, 34(5): 027301
[10] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 027301
[11] SONG Xiao-Hui, JIN Yi-Rong, FAN Zhen-Jun, MI Zhen-Yu, ZHANG Dian-Lin. Degradation Mechanism of the Superconducting Transition Temperature in Nb Thin Films[J]. Chin. Phys. Lett., 2015, 32(4): 027301
[12] ZHANG Peng, LI Shi-Bin, YU Hong-Ping, WU Zhi-Ming, CHEN Zhi, JIANG Ya-Dong. Polarization Induced High Al Composition AlGaN p–n Junction Grown on Silicon Substrates[J]. Chin. Phys. Lett., 2014, 31(11): 027301
[13] WANG Yong, ZHANG Xue-Qing, LI Hui. Detection of Ordered Molecules Adsorbed on Graphene: a Theoretical Study[J]. Chin. Phys. Lett., 2014, 31(11): 027301
[14] YU Hong-Ping, LI Shi-Bin, ZHANG Peng, WU Shuang-Hong, WEI Xiong-Bang, WU Zhi-Ming, CHEN Zhi. Optical Performance of N-Face AlGaN Ultraviolet Light Emitting Diodes[J]. Chin. Phys. Lett., 2014, 31(10): 027301
[15] ZHAO Shang-Qian, LÜ Yan, LÜ Wen-Gang, LIANG Wen-Jie, WANG En-Ge. Transport Properties of Surface-Modulated Gold Atomic-Chains and Nanofilms: Ab initio Calculations[J]. Chin. Phys. Lett., 2014, 31(06): 027301
Viewed
Full text


Abstract