Chin. Phys. Lett.  2019, Vol. 36 Issue (2): 026801    DOI: 10.1088/0256-307X/36/2/026801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Probing Lattice Vibrations at SiO$_{2}$/Si Surface and Interface with Nanometer Resolution
Yue-Hui Li1,2†, Mei Wu1,2†, Rui-Shi Qi1, Ning Li1,2, Yuan-Wei Sun1,2, Cheng-Long Shi3, Xue-Tao Zhu4, Jian-Dong Guo4, Da-Peng Yu2,5,6, Peng Gao1,2,6**
1International Center for Quantum Materials, Peking University, Beijing 100871
2Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871
3Nion Company, 11511 NE 118Th Street, Kirkland, Washington State 98034, USA
4Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
5Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055
6Collaborative Innovation Centre of Quantum Matter, Beijing 100871
Cite this article:   
Yue-Hui Li, Mei Wu, Rui-Shi Qi et al  2019 Chin. Phys. Lett. 36 026801
Download: PDF(2461KB)   PDF(mobile)(2845KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recent advances in monochromatic aberration corrected electron microscopy make it possible to detect the lattice vibrations with both high-energy resolution and high spatial resolution. Here, we use sub-10 meV electron energy loss spectroscopy to investigate the local vibrational properties of the SiO$_{2}$/Si surface and interface. The energy of the surface mode is thickness dependent, showing a blue shift as $z$-thickness (parallel to the fast electron beam) of SiO$_{2}$ film increases, while the energy of the bulk mode and the interface mode keeps constant. The intensity of the surface mode is well-described by a Bessel function of the second kind. The mechanism of the observed spatially dependent vibrational behavior is discussed and compared with dielectric response theory analysis. Our nanometer scale measurements provide useful information on the bonding conditions at the surface and interface.
Received: 21 October 2018      Published: 22 January 2019
PACS:  68.37.Lp (Transmission electron microscopy (TEM))  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  68.37.Ma (Scanning transmission electron microscopy (STEM))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/2/026801       OR      https://cpl.iphy.ac.cn/Y2019/V36/I2/026801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue-Hui Li
Mei Wu
Rui-Shi Qi
Ning Li
Yuan-Wei Sun
Cheng-Long Shi
Xue-Tao Zhu
Jian-Dong Guo
Da-Peng Yu
Peng Gao
[1]Ashcroft N W 1976 Solid State Physics (New York: Brooks Cole)
[2]Houchmandzadeh B, Lajzerowicz J and Salje E 1992 J. Phys.: Condens. Matter 4 9779
[3]Xia F N, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photon. 8 899
[4]Maradudin A A and Oitmaa J 1969 Solid State Commun. 7 1143
[5]Ibach H and Mills D L 1982 Electron Energy Loss Spectroscopy and Surface Vibrations (New York: Academic Press)
[6]Zhang S Y et al 2018 Phys. Rev. B 97 035408
[7]Griffiths P R 1975 Chemical Infrared Fourier Transform Spectroscopy (New York: Wiley)
[8]Stuart B 2005 Kirk-Othmer Encyclopedia of Chemical Technology (New York: Wiley)
[9]Efremov E V, Ariese F and Gooijer C 2008 Anal. Chim. Acta 606 119
[10]Steidtner J and Pettinger B 2008 Phys. Rev. Lett. 100 236101
[11]Krivanek O L et al 2014 Nature 514 209
[12]Lagos M J, Trügler A, Hohenester U and Batson P E 2017 Nature 543 529
[13]Crozier P A, Aoki T and Liu Q 2016 Ultramicroscopy 169 30
[14]Govyadinov A A et al 2017 Nat. Commun. 8 95
[15]Hachtel J A, Lupini A R and Idrobo J C 2018 Sci. Rep. 8 5637
[16]Hudak B M et al 2017 Nat. Commun. 8 15316
[17]Idrobo J C et al 2018 Phys. Rev. Lett. 120 095901
[18]Lagos M J and Batson P E 2018 Nano Lett. 18 4556
[19]Dwyer C et al 2016 Phys. Rev. Lett. 117 256101
[20]Hage F S et al 2018 Sci. Adv. 4 eaar7495
[21]Rez P et al 2016 Nat. Commun. 7 10945
[22]Nicollian E H 1977 J. Vac. Sci. Technol. 14 1112
[23]Kirton M J et al 1989 Semicond. Sci. Technol. 4 1116
[24]Tu Y H and Tersoff J 2000 Phys. Rev. Lett. 84 4393
[25]Kröger E 1968 Z. Phys. A: Hadrons Nucl. 216 115
[26]Moreau P, Brun N, Walsh C A, Colliex C and Howie A 1997 Phys. Rev. B 56 6774
[27]Hohenester U and Trügler A 2012 Comput. Phys. Commun. 183 370
[28]Bates J B, Hendricks R W and Shaffer L B 1974 J. Chem. Phys. 61 4163
[29]Innocenzi P 2003 J. Non-Cryst. Solids 316 309
[30]Montero I, Galán L, Najmi O and Albella J M 1994 Phys. Rev. B 50 4881
[31]Lagos M J et al 2018 Microscopy 67 i3
[32]Innocenzi P, Falcaro P, Grosso D and Babonneau F 2003 J. Phys. Chem. B 107 4711
[33]Howie A 1983 Ultramicroscopy 11 141
[34]Liu B Y et al 2018 J. Chin. Electron. Microsc. Soc. 5 474 (in Chinese)
[35]Venkatraman K, Rez P, March K and Crozier P A 2018 Microscopy 67 i14
[36]Garcia-Molina R, Gras-Marti A, Howie A and Ritchie R H 1985 J. Phys. C 18 5335
Related articles from Frontiers Journals
[1] Mei Wu, Ruochen Shi, Ruishi Qi, Yuehui Li, Tao Feng, Bingyao Liu, Jingyuan Yan, Xiaomei Li, Zhetong Liu, Tao Wang, Tongbo Wei, Zhiqiang Liu, Jinlong Du, Ji Chen, and Peng Gao. Effects of Localized Interface Phonons on Heat Conductivity in Ingredient Heterogeneous Solids[J]. Chin. Phys. Lett., 2023, 40(3): 026801
[2] Changdong Qin, Le Wang, Pengfei Yan, Yingge Du, and Manling Sui. LiCoO$_{2}$ Epitaxial Film Enabling Precise Analysis of Interfacial Degradations[J]. Chin. Phys. Lett., 2021, 38(6): 026801
[3] Qing Liao, Long Kang, Tong-Min Zhang, Hui-Ping Liu, Tao Wang, Xiao-Gang Li, Jin-Yu Li, Zhen Yang, and Bing-Sheng Li. Comparison of Cavities Formed in Single Crystalline and Polycrystalline $\alpha$-SiC after H Implantation[J]. Chin. Phys. Lett., 2020, 37(7): 026801
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 026801
[5] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 026801
[6] Bing-Sheng Li, Zhi-Guang Wang, Tie-Long Shen, Kong-Fang Wei, Yan-Bin Sheng, Tamakai Shibayama, Xi-Rui Lu, An-Li Xiong. Effects of Helium Implantation and Subsequent Electron Irradiation on Microstructures of Fe-11wt.% Cr Model Alloy[J]. Chin. Phys. Lett., 2019, 36(4): 026801
[7] Hui-Ping Liu, Jin-Yu Li, Bing-Sheng Li. Microstructure of Hydrogen-Implanted Polycrystalline $\alpha$-SiC after Annealing[J]. Chin. Phys. Lett., 2018, 35(9): 026801
[8] Yu-Zhu Liu, Bing-Sheng Li, Hua Lin, Li Zhang. Recrystallization Phase in He-Implanted 6H-SiC[J]. Chin. Phys. Lett., 2017, 34(7): 026801
[9] Ya-Qing Feng, Kui-Juan Jin, Chen Ge, Xu He, Lin Gu, Zhen-Zhong Yang, Hai-Zhong Guo, Qian Wan, Meng He, Hui-Bin Lu, Guo-Zhen Yang. Effect of Terraces at the Interface on the Structural and Physical Properties of La$_{0.8}$Sr$_{0.2}$MnO$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2016, 33(07): 026801
[10] TAN Yu, WANG Yan-Guo. Enhanced Current Carrying Capability of Au-ZnSe Nanowire-Au Nanostructure via High Energy Electron Irradiation[J]. Chin. Phys. Lett., 2014, 31(10): 026801
[11] GUO Xiao-Fei, XU Bin, WEN Zhen-Xing, FAN Xiao-Hong, TIAN Bin. The near-Surface Region of Cubic Boron Nitride Single Crystal from the Li3N-hBN System[J]. Chin. Phys. Lett., 2014, 31(04): 026801
[12] WANG Jun-Zhuan, YANG Xin-Xin, WEI Xiao-Xu, YU Lin-Wei, SHI Yi. Enhanced Crystallization and Sensitization of Si Nanocrystals in Al2O3:Er/Si:Er Multilayers[J]. Chin. Phys. Lett., 2013, 30(11): 026801
[13] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 026801
[14] LV Xiao-Long, ZHANG Xia, YAN Xin, LIU Xiao-Long, CUI Jian-Gong, LI Jun-Shuai, HUANG Yong-Qing, REN Xiao-Min. Growth of Self-Catalyzed InP Nanowires by Metalorganic Chemical Vapour Deposition[J]. Chin. Phys. Lett., 2012, 29(12): 026801
[15] ZENG Ya-Ping, WANG Yan-Guo, QU Bai-Hua, and YU Hong-Chun. Cathode-Control Alloying at an Au-ZnSe Nanowire Contact via in Situ Joule Heating[J]. Chin. Phys. Lett., 2012, 29(8): 026801
Viewed
Full text


Abstract