Chin. Phys. Lett.  2019, Vol. 36 Issue (2): 026201    DOI: 10.1088/0256-307X/36/2/026201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Dynamic Spallation in Uranium under Laser Shock Loading
Da-Wu Xiao1, Hua Shu2, Dong-Li Zou1, Chao Lu1, Li-Feng He1**
1Institute of Materials, China Academy of Engineering Physics, Mianyang 621700
2Institute of Laser, China Academy of Engineering Physics, Mianyang 621907
Cite this article:   
Da-Wu Xiao, Hua Shu, Dong-Li Zou et al  2019 Chin. Phys. Lett. 36 026201
Download: PDF(1801KB)   PDF(mobile)(1802KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The spall behavior of uranium is investigated using direct laser ablation loading experiments. The uranium targets are cut and ground to 0.05 mm, 0.1 mm, and 0.15 mm in thickness. Laser energies are varied to yield a constant peak pressure. This results in different strain rates and varying degrees of damage to the uranium targets. The spall strength is calculated and analyzed from the free surface velocity histories recorded using a line velocity interferometer for any reflections system. The spall strength increases from 4.3 GPa to 9.4 GPa with strain rates ranging from $4.0\times10^{6}$ s$^{-1}$ to $1.7\times10^{7}$ s$^{-1}$. Post-mortem analysis is performed on the recovered samples, revealing the twin-matrix interfaces together with the inclusions to be the primary factor governing the spall fracture of uranium.
Received: 18 September 2018      Published: 22 January 2019
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  62.50.Ef (Shock wave effects in solids and liquids)  
  62.20.mm (Fracture)  
Fund: Supported by the Science Foundation of China Academy of Engineering Physics under Grant No A090504.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/2/026201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I2/026201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Da-Wu Xiao
Hua Shu
Dong-Li Zou
Chao Lu
Li-Feng He
[1]Robbins D L and Sheffield S A 2013 LA-UR 0962
[2]Kozlov E A, Bondarchuk S V, Zuev Y N et al 2011 Phys. Met. Metallogr. 111 410
[3]Kozlov E A, Pankratov D G, Taranov V I et al 2009 Phys. Met. Metallogr. 108 401
[4]Zaretsky E, Herrmann B and Shrarts D 2006 Pflügers Arch. - Eur. J. Physiol. 134 971
[5]Zurek A K, Embury J D, Kelly A et al 1997 SCCM AIP Conf Proc. 429 423
[6]Hixson R S, Vorthman J E, Gustavsen R L et al 1997 SCCM AIP Conf Proc. 429 479
[7]Grady D E 1986 Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena (New York: Marcel Dekker) p 763
[8]Cochran S and Banner D 1977 J. Appl. Phys. 48 2729
[9]Robbins D L, Kelly A M, Alexander D J et al 2001 SCCM AIP Conf Proc. 620 499
[10]Mccabe R J and Teter D F 2006 J. Microsc. 223 33
[11]Phipps C R 1988 J. Appl. Phys. 64 1083
[12]Pedrazas N A, Worthington D L, Dalton D A, Sherek P A, Steuck S P, Quevedo H J, Bernstein A C, Taleff E M and Ditmire T 2012 Mater. Sci. Eng. A 536 117
[13]Cuq-Lelandais J P, Boustie M, Soulard L, Berthe L et al 2010 EPJ. Web Conf. 10 00014
[14]Moshe E, Eliezer S, Dekel E et al 1998 J. Appl. Phys. 83 8
[15]Remington T P, Hahn E N, Zhao S et al 2018 Acta Mater. 158 313
[16]Grady D E 1988 J. Mech. Phys. Solids 36 353
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 026201
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 026201
[3] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 026201
[4] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 026201
[5] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 026201
[6] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 026201
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 026201
[8] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 026201
[9] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 026201
[10] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 026201
[11] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 026201
[12] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 026201
[13] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 026201
[14] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 026201
[15] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 026201
Viewed
Full text


Abstract