Chin. Phys. Lett.  2019, Vol. 36 Issue (11): 114203    DOI: 10.1088/0256-307X/36/11/114203
Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping
Li-Qi Yu1, Xin-Yu Xu1, Zhen-Feng Zhang1, Qi Feng1, Bin Zhang2, Ying-Chun Ding1**, Qiang Liu2**
1College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029
2State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084
Cite this article:   
Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang et al  2019 Chin. Phys. Lett. 36 114203
Download: PDF(724KB)   PDF(mobile)(717KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Wavefront shaping technology has mainly been applied to microscopic fluorescence imaging through turbid media, with the advantages of high resolution and imaging depth beyond the ballistic regime. However, fluorescence needs to be introduced extrinsically and the field of view is limited by memory effects. Here we propose a new method for microscopic imaging light transmission through turbid media, which has the advantages of label-free and discretional field of view size, based on transmission-matrix-based wavefront shaping and the random matrix theory. We also verify that a target of absorber behind the strong scattering media can be imaged with high resolution in the experiment. Our method opens a new avenue for the research and application of wavefront shaping.
Received: 23 August 2019      Published: 21 October 2019
PACS:  42.30.-d (Imaging and optical processing)  
  42.25.-p (Wave optics)  
  42.25.Dd (Wave propagation in random media)  
  42.25.Fx (Diffraction and scattering)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500, the Beijing Natural Science Foundation under Grant No 7182091, the National Natural Science Foundation of China under Grant No 21627813, and the Research Projects on Biomedical Transformation of China-Japan Friendship Hospital under Grant No PYBZ1801.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Li-Qi Yu
Xin-Yu Xu
Zhen-Feng Zhang
Qi Feng
Bin Zhang
Ying-Chun Ding
Qiang Liu
[1]Čižmár T, Mazilu M and Dholakia K 2010 Nat. Photon. 4 388
[2]Tyson R 2010 Principles of Adaptive Optics Third Edition (Boca Raton: Press CRC)
[3]Small E, Katz O, Guan Y F and Silberberg Y 2012 Opt. Lett. 37 3429
[4]Nikolopoulos G M and Diamanti E 2017 Sci. Rep. 7 46047
[5]Derode A, Tourin A, de Rosny J, Tanter M, Yon S and Fink M 2003 Phys. Rev. Lett. 90 014301
[6]Lerosey G, de Rosny J, Tourin A and Fink M 2007 Science 315 1120
[7]Popoff S, Lerosey G, Fink M, Boccara A C and Gigan S 2010 Nat. Commun. 1 81
[8]Zhang Z F, Zhang B, Feng Q, He H M and Ding Y C 2018 Chin. Phys. B 27 084201
[9]Wang Y M, Judkewitz B, DiMarzio C A and Yang C H 2012 Nat. Commun. 3 928
[10]Si K, Fiolka R and Cui M 2012 Nat. Photon. 6 657
[11]Ma C, Xu X, Liu Y and Wang L H V 2014 Nat. Photon. 8 931
[12]Vellekoop I M and Aegerter C M 2010 Opt. Lett. 35 1245
[13]Kong L J, Tang J Y and Cui M 2016 Opt. Express 24 1214
[14]Feng Q, Zhang B, Liu Z P, Lin C Y and Ding Y C 2017 Appl. Opt. 56 3240
[15]Li B Q, Zhang B, Feng Q, Cheng X M, Ding Y C and Liu Q 2018 Chin. Phys. Lett. 35 124201
[16]Horstmeyer R, Ruan H W and Yang C H 2015 Nat. Photon. 9 563
[17]van Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A and Mosk A P 2011 Phys. Rev. Lett. 106 193905
[18]Ruan H W, Jang M, Judkewitz B and Yang C H 2015 Sci. Rep. 4 7156
[19]Hong G S, Diao S, Chang J L, Antaris A L, Chen C X, Zhang B, Zhao S, Atochin D N, Huang P L, Andreasson K I, Kuo C J and Dai H J 2014 Nat. Photon. 8 723
[20]Katz O, Small E and Silberberg Y 2012 Nat. Photon. 6 549
[21]Rotter S and Gigan S 2017 Rev. Mod. Phys. 89 015005
[22]Popoff S M, Lerosey G, Fink M, Boccara A C and Gigan S 2011 New J. Phys. 13 123021
[23]Goorden S A, Bertolotti J and Mosk A P 2014 Opt. Express 22 17999
[24]Jia Y Q, Feng Q, Zhang B, Wang W, Lin C Y and Ding Y C 2018 Chin. Phys. Lett. 35 054203
Related articles from Frontiers Journals
[1] Ling-Jun Kong, Rui Liu, Wen-Rong Qi, Zhou-Xiang Wang, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Asymptotical Locking Tomography of High-Dimensional Entanglement[J]. Chin. Phys. Lett., 2020, 37(3): 114203
[2] Rui Liu, Ling-Jun Kong, Yu Si, Zhou-Xiang Wang, Wen-Rong Qi, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Multi-Path Ghost Imaging by Means of an Additional Time Correlation[J]. Chin. Phys. Lett., 2019, 36(4): 114203
[3] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 114203
[4] Zong-Liang Xie, Bo Qi, Hao-Tong Ma, Ge Ren, Yu-Feng Tan, Bi He, Heng-Liang Zeng, Chuan Jiang. Optical Transfer Function Reconstruction in Incoherent Fourier Ptychography[J]. Chin. Phys. Lett., 2016, 33(04): 114203
[5] Zhao-Hui Li, Jian-Qi Zhang, De-Lian Liu, Xiao-Rui Wang. Numerical Evaluation of Effect of Motion of Samples on Ptychographic Imaging and Solution with a Random Phase Modulator[J]. Chin. Phys. Lett., 2016, 33(02): 114203
[6] Tuo Li, Yi-Shi Shi. Attack on Optical Double Random Phase Encryption Based on the Principle of Ptychographical Imaging[J]. Chin. Phys. Lett., 2016, 33(01): 114203
[7] XIE Zong-Liang, MA Hao-Tong, QI Bo, REN Ge, TAN Yu-Feng, HE Bi, ZENG Heng-Liang, JIANG Chuan. Aperture-Scanning Fourier Ptychographic Encoding with Phase Modulation[J]. Chin. Phys. Lett., 2015, 32(12): 114203
[8] GAO Lu, TIAN Jia, LIN Hai-Long. Experimental Detection of Depth of Field for a Thermal Light Lensless Ghost Imaging System[J]. Chin. Phys. Lett., 2015, 32(01): 114203
[9] LI Qiang, PU Xiao-Yun, YANG Rui-Fen, ZHAI Ying. Measurement of Diffusion Coefficient of Liquids by Using an Asymmetric Liquid-Core Cylindrical Lens: Observing the Diffusion Process Directly[J]. Chin. Phys. Lett., 2014, 31(05): 114203
[10] WAN Yu-Hong, MAN Tian-Long, CHEN Hao, JIANG Zhu-Qing, WANG Da-Yong. Effect of Wavefront Properties on Numerical Aperture of Fresnel Hologram in Incoherent Holographic Microscopy[J]. Chin. Phys. Lett., 2014, 31(04): 114203
[11] SHI Yi-Shi , WANG Ya-Li, LI Tuo, GAO Qian-Kun, WAN Hao, ZHANG San-Guo, WU Zhi-Bo . Ptychographical Imaging Algorithm with a Single Random Phase Encoding[J]. Chin. Phys. Lett., 2013, 30(7): 114203
[12] SHI Yi-Shi, WANG Ya-Li, ZHANG San-Guo. Generalized Ptychography with Diverse Probes[J]. Chin. Phys. Lett., 2013, 30(5): 114203
[13] ZHANG Man, PAN Rui, XIONG Wei, HE Ting, SHEN Jing-Ling. A Compressed Terahertz Imaging Method[J]. Chin. Phys. Lett., 2012, 29(10): 114203
[14] PAN Xing-Chen, LIN Qiang, LIU Cheng, and ZHU Jian-Qiang. A Lens Assisted Phase Microscope Based on Ptychography[J]. Chin. Phys. Lett., 2012, 29(8): 114203
[15] WANG Chen**, QIAO Ling-Ling, MAO Zheng-Le . Simulation of Far-Field Superresolution Fluorescence Imaging with Two-Color One-Photon Excitation of Reversible Photoactivatable Protein[J]. Chin. Phys. Lett., 2011, 28(5): 114203
Full text