Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 107301    DOI: 10.1088/0256-307X/36/10/107301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity
Ping Jiang1,2, Chao Li1,2, Yuan-Yuan Chen3, Gang Song1,2, Yi-Lin Wang1,2, Li Yu1,2**
1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876
2School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
3China South Industries Research Academy, Beijing 100089
Cite this article:   
Ping Jiang, Chao Li, Yuan-Yuan Chen et al  2019 Chin. Phys. Lett. 36 107301
Download: PDF(938KB)   PDF(mobile)(924KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate strong exciton-plasmon coupling and plasmon-mediated hybridization between the Frenkel (F) and Wannier–Mott (WM) excitons of an organic-inorganic hybrid system consisting of a silver ring separated from a monolayer WS$_{2}$ by J-aggregates. The extinction spectra of the hybrid system calculated by employing the coupled oscillator model are consistent with the results simulated by the finite-difference time-domain method. The calculation results show that strong couplings among F excitons, WM excitons, and localized surface plasmon resonances (LSPRs) lead to the appearance of three plexciton branches in the extinction spectra. The weighting efficiencies of the F exciton, WM exciton and LSPR modes in three plexciton branches are used to analyze the exciton-polaritons in the system. Furthermore, the strong coupling between two different excitons and LSPRs is manipulated by tuning F or WM exciton resonances.
Received: 08 July 2019      Published: 21 September 2019
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  11.15.Me (Strong-coupling expansions)  
  52.25.Tx (Emission, absorption, and scattering of particles)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301300, the National Natural Science Foundation of China under Grant Nos 11574035 and 11374041, and the State Key Laboratory of Information Photonics and Optical Communications.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/107301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/107301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ping Jiang
Chao Li
Yuan-Yuan Chen
Gang Song
Yi-Lin Wang
Li Yu
[1]Baranov D G, Wersäll M, Cuadra J et al 2017 ACS Photon. 5 24
[2]Cuadra J, Baranov D G, Wersäll M et al 2018 Nano Lett. 18 1777
[3]Törmä P and Barnes W L 2015 Rep. Prog. Phys. 78 013901
[4]Flick J, Rivera N and Narang P 2018 Nanophotonics 7 1479
[5]Xu D, Xiong X, Wu L et al 2018 Adv. Opt. Photon. 10 703
[6]Zhou Z K, Liu J, Bao Y et al Prog. Quantum Electron. 65 1
[7]Lidzey D G, Wenus J, Whittaker D M et al 2004 J. Lumin. 110 347
[8]Holmes R J, Kéna-Cohen S, Menon V M et al 2006 Phys. Rev. B 74 235211
[9]Wenus J, Parashkov R, Ceccarelli S et al 2006 Phys. Rev. B 74 235212
[10]Lanty G, Zhang S, Lauret J S et al 2011 Phys. Rev. B 84 195449
[11]Holmes R J and Forrest S R 2004 Phys. Rev. Lett. 93 186404
[12]Slootsky M, Liu X, Menon V M et al 2014 Phys. Rev. Lett. 112 076401
[13]Luo X 2015 Sci. Chin. Ser. G 58 594201
[14]Gao P, Yao N, Wang C et al 2015 Appl. Phys. Lett. 106 093110
[15]Lidzey D G, Bradley D D C, Virgili T et al 1999 Phys. Rev. Lett. 82 3316
[16]Flatten L C, Coles D M, He Z et al 2017 Nat. Commun. 8 14097
[17]Liu G B, Xiao D, Yao Y et al 2015 Chem. Soc. Rev. 44 2643
[18]Rodriguez S R, Amo A, Sagnes I et al 2016 Nat. Commun. 7 11887
[19]Zhang S, Zhang H, Xu T et al 2018 Phys. Rev. B 97 235401
[20]Zhu B, Chen X and Cui X 2015 Sci. Rep. 5 9218
[21]Abid I, Chen W, Yuan J et al 2017 ACS Photon. 4 1653
[22]Wen J, Wang H, Wang W et al 2017 Nano Lett. 17 4689
[23]Vasa P, Pomraenke R, Cirmi G et al 2010 ACS Nano 4 7559
[24]Coles D M, Somaschi N, Michetti P et al 2014 Nat. Mater. 13 712
[25]Zhang K, Xu Y, Chen T Y et al 2016 Opt. Lett. 41 5740
[26]Balasubrahmaniyam M, Kar D, Sen P et al 2017 Appl. Phys. Lett. 110 171101
[27]Yang H, Yao J, Wu X W et al 2017 J. Phys. Chem. C 121 25455
[28]Zhang K, Shi W B, Wang D et al 2016 Appl. Phys. Lett. 108 193111
[29]Fraser M D, Höfling S and Yamamoto Y 2016 Nat. Mater. 15 1049
[30]Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[31]Wang S, Li S, Chervy T et al 2016 Nano Lett. 16 4368
[32]Li Y, Chernikov A, Zhang X et al 2014 Phys. Rev. B 90 205422
[33]Gentile M J, Núñez-Sánchez S and Barnes W L 2014 Nano Lett. 14 2339
[34]Fofang N T, Park T H, Neumann O et al 2008 Nano Lett. 8 3481
[35]Schlather A E, Large N, Urban A S et al 2013 Nano Lett. 13 3281
[36]O'Donnell K P and Chen X 1991 Appl. Phys. Lett. 58 2924
[37]Wu X, Gray S K and Pelton M 2010 Opt. Express 18 23633
[38]Jiang P, Song G, Wang Y et al 2019 Opt. Express 27 16613
[39]Kimble H J 2008 Nature 453 1023
[40]Chen G, Yu Y C, Zhuo X L et al 2013 Phys. Rev. B 87 195138
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 107301
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 107301
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 107301
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 107301
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 107301
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 107301
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 107301
[8] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 107301
[9] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 107301
[10] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 107301
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 107301
[12] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 107301
[13] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 107301
[14] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 107301
[15] CAI Yong-Jing, LI Ming, XIONG Xiao, YU Le, REN Xi-Feng, GUO Guo-Ping, GUO Guang-Can. Waveguide Mode Splitter Based on Multi-mode Dielectric-Loaded Surface Plasmon Polariton Waveguide[J]. Chin. Phys. Lett., 2015, 32(10): 107301
Viewed
Full text


Abstract