Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 100303    DOI: 10.1088/0256-307X/36/10/100303
Experimental Hamiltonian Learning of an 11-Qubit Solid-State Quantum Spin Register
P.-Y. Hou$^†$, L. He$^†$, F. Wang$^†$, X.-Z. Huang, W.-G. Zhang, X.-L. Ouyang, X. Wang, W.-Q. Lian, X.-Y. Chang, L.-M. Duan**
Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084
Cite this article:   
P.-Y. Hou, L. He, F. Wang et al  2019 Chin. Phys. Lett. 36 100303
Download: PDF(1448KB)   PDF(mobile)(1743KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Learning the Hamiltonian of a quantum system is indispensable for prediction of the system dynamics and realization of high fidelity quantum gates. However, it is a significant challenge to efficiently characterize the Hamiltonian which has a Hilbert space dimension exponentially growing with the system size. Here, we develop and implement an adaptive method to learn the effective Hamiltonian of an 11-qubit quantum system consisting of one electron spin and ten nuclear spins associated with a single nitrogen-vacancy center in a diamond. We validate the estimated Hamiltonian by designing universal quantum gates based on the learnt Hamiltonian and implementing these gates in the experiment. Our experimental result demonstrates a well-characterized 11-qubit quantum spin register with the ability to test quantum algorithms, and shows our Hamiltonian learning method as a useful tool for characterizing the Hamiltonian of the nodes in a quantum network with solid-state spin qubits.
Received: 23 September 2019      Published: 25 September 2019
PACS:  03.67.-a (Quantum information)  
Fund: Supported by the Frontier Science Center for Quantum Information of the Ministry of Education of China, Tsinghua University Initiative Scientific Research Program, and the National Key Research and Development Program of China (2016YFA0301902).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
P.-Y. Hou
L. He
F. Wang
X.-Z. Huang
W.-G. Zhang
X.-L. Ouyang
X. Wang
W.-Q. Lian
X.-Y. Chang
L.-M. Duan
[1]Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hansel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506
[2]Friis N, Marty O, Maier C, Hempel C, Holzapfel M, Jurcevic P, Plenio M B, Huber M, Roos C, Blatt R 2018 Phys. Rev. X 8 021012
[3]Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X and Monroe C 2017 Nature 551 601
[4]Reiserer A, Kalb N, Blok M S, K J van Bemmelen, Taminiau T H, Hanson R, Twitchen D J and Markham M 2016 Phys. Rev. X 6 021040
[5]Humphreys P C, Kalb N, Morits J P, Schouten R N, Vermeulen R F, Twitchen D J, Markham M and Hanson R 2018 Nature 558 268
[6]Childress L and Hanson R 2013 MRS Bull. 38 134
[7]Dutt M G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A, Hemmer P and Lukin M 2007 Science 316 1312
[8]Pfaff W, Hensen B, Bernien H, S B Van Dam, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J 2014 Science 345 532
[9]S B Van Dam, Humphreys P C, Rozpkedek F, Wehner S and Hanson R 2017 Quantum Sci. Technol. 2 034002
[10]Abobeih M H, Cramer J, Bakker M A, Kalb N, Markham M, Twitchen D and Taminiau T H 2018 Nat. Commun. 9 2552
[11]Taminiau T H, Wagenaar J J T, T van der Sar, Jelezko F, Dobrovitski V V and Hanson R 2012 Phys. Rev. Lett. 109 137602
[12]Taminiau T H, Cramer J, T van der Sar, Dobrovitski V V and Hanson R 2014 Nat. Nanotechnol. 9 171
[13]Goldman M L, Sipahigil A, Doherty M W, Yao N Y, Bennett S D, Markham M, Twitchen D J, Manson N B, Kubanek A and Lukin M D 2015 Phys. Rev. Lett. 114 145502
[14]Casanova J, Wang Z Y and Plenio M B 2017 Phys. Rev. A 96 032314
[15]Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M 2017 Nature 551 579
[16]Kelly J, Barends R, Fowler A G, Megrant A, Jeffrey E, White T C, Sank D, Mutus J Y, Campbell B, Chen Y 2015 Nature 519 66
[17]Ibm makes quantum computing available on ibm cloud
[18]Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J 2019 Science 365 574
[19]Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y 2019 Science 364 753
[20]Cramer J, Kalb N, Rol M A, Hensen B, Blok M S, Markham M, Twitchen D J, Hanson R and Taminiau T H 2016 Nat. Commun. 7 11526
[21]Maletinsky P, Hong S, Grinolds M S, Hausmann B, Lukin M D, Walsworth R L, Loncar M and Yacoby A 2012 Nat. Nanotechnol. 7 320
[22]Schirhagl R, Chang K, Loretz M and Degen C L 2014 Annu. Rev. Phys. Chem. 65 83
[23]Lovchinsky I, Sushkov A O, Urbach E, N P de Leon, Choi S, K De Greve, Evans R, Gertner R, Bersin E, Muller C 2016 Science 351 836
[24]Boss J M, Cujia K S, Zopes J and Degen C L 2017 Science 356 837
[25]Schmitt S, Gefen T, Sturner F M, Unden T, Wolff G, Muller C, Scheuer J, Naydenov B, Markham M, Pezzagna S 2017 Science 356 832
[26]Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[27]Dolde F, Bergholm V, Wang Y, Jakobi I, Naydenov B, Pezzagna S, Meijer J, Jelezko F, Neumann P, Schulte-Herbrüggen T 2014 Nat. Commun. 5 3371
[28]Arroyo-Camejo S, Lazariev A, Hell S W and Balasubramanian G 2014 Nat. Commun. 5 4870
[29]G De Lange, Wang Z, Riste D, Dobrovitski V and Hanson R 2010 Science 330 60
[30]Naydenov B, Dolde F, Hall L T, Shin C, Fedder H, Hollenberg L C L, Jelezko F and Wrachtrup J 2011 Phys. Rev. B 83 081201
[31]Pham L M, Bar-Gill N, Belthangady C, D Le Sage, Cappellaro P, Lukin M D, Yacoby A and Walsworth R L 2012 Phys. Rev. B 86 045214
[32]Liu G Q, Po H C, Du J, Liu R B and Pan X Y 2013 Nat. Commun. 4 2254
[33]Bernien H, Hensen B, Pfaff W, Koolstra G, Blok M, Robledo L, Taminiau T, Markham M, Twitchen D, Childress L 2013 Nature 497 86
[34]Kalb N, Reiserer A A, Humphreys P C, Bakermans J J, Kamerling S J, Nickerson N H, Benjamin S C, Twitchen D J, Markham M and Hanson R 2017 Science 356 928
[35]Bonato C, Blok M S, Dinani H T, Berry D W, Markham M L, Twitchen D J and Hanson R 2016 Nat. Nanotechnol. 11 247
[36]Cappellaro P 2012 Phys. Rev. A 85 030301
[37]Griffiths R B and Niu C S 1996 Phys. Rev. Lett. 76 3228
[38]Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F and Duan L M 2014 Nature 514 72
[39]Rong X, Geng J, Shi F, Liu Y, Xu K, Ma W, Kong F, Jiang Z, Wu Y and Du J 2015 Nat. Commun. 6 8748
[40]Bradley C E, Randall J, Abobeih M H, Berrevoets R C, Degen M J, Bakker M A, Markham M, Twitchen D J and Taminiau T H 2019 Phys. Rev. X 9 031045
Related articles from Frontiers Journals
[1] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 100303
[2] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 100303
[3] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 100303
[4] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 100303
[5] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 100303
[6] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 100303
[7] Li Chen, Dong Yan, Li-Jun Song, Shou Zhang. Dynamics of Quantum Fisher Information in Homodyne-Mediated Feedback Control[J]. Chin. Phys. Lett., 2019, 36(3): 100303
[8] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 100303
[9] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 100303
[10] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 100303
[11] Qi Yin, Guo-Yong Xiang, Chuan-Feng Li, Guang-Can Guo. Compressed Sensing Quantum State Tomography Assisted by Adaptive Design[J]. Chin. Phys. Lett., 2018, 35(7): 100303
[12] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 100303
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 100303
[14] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 100303
[15] Bo-Wen Ma, Wan-Su Bao, Tan Li, Feng-Guang Li, Shuo Zhang, Xiang-Qun Fu. A Four-Phase Improvement of Grover's Algorithm[J]. Chin. Phys. Lett., 2017, 34(7): 100303
Full text