Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 100303    DOI: 10.1088/0256-307X/36/10/100303
GENERAL |
Experimental Hamiltonian Learning of an 11-Qubit Solid-State Quantum Spin Register
P.-Y. Hou$^†$, L. He$^†$, F. Wang$^†$, X.-Z. Huang, W.-G. Zhang, X.-L. Ouyang, X. Wang, W.-Q. Lian, X.-Y. Chang, L.-M. Duan**
Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084
Cite this article:   
P.-Y. Hou, L. He, F. Wang et al  2019 Chin. Phys. Lett. 36 100303
Download: PDF(1448KB)   PDF(mobile)(1743KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Learning the Hamiltonian of a quantum system is indispensable for prediction of the system dynamics and realization of high fidelity quantum gates. However, it is a significant challenge to efficiently characterize the Hamiltonian which has a Hilbert space dimension exponentially growing with the system size. Here, we develop and implement an adaptive method to learn the effective Hamiltonian of an 11-qubit quantum system consisting of one electron spin and ten nuclear spins associated with a single nitrogen-vacancy center in a diamond. We validate the estimated Hamiltonian by designing universal quantum gates based on the learnt Hamiltonian and implementing these gates in the experiment. Our experimental result demonstrates a well-characterized 11-qubit quantum spin register with the ability to test quantum algorithms, and shows our Hamiltonian learning method as a useful tool for characterizing the Hamiltonian of the nodes in a quantum network with solid-state spin qubits.
Received: 23 September 2019      Published: 25 September 2019
PACS:  03.67.-a (Quantum information)  
Fund: Supported by the Frontier Science Center for Quantum Information of the Ministry of Education of China, Tsinghua University Initiative Scientific Research Program, and the National Key Research and Development Program of China (2016YFA0301902).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/100303       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/100303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
P.-Y. Hou
L. He
F. Wang
X.-Z. Huang
W.-G. Zhang
X.-L. Ouyang
X. Wang
W.-Q. Lian
X.-Y. Chang
L.-M. Duan
[1]Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hansel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506
[2]Friis N, Marty O, Maier C, Hempel C, Holzapfel M, Jurcevic P, Plenio M B, Huber M, Roos C, Blatt R 2018 Phys. Rev. X 8 021012
[3]Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X and Monroe C 2017 Nature 551 601
[4]Reiserer A, Kalb N, Blok M S, K J van Bemmelen, Taminiau T H, Hanson R, Twitchen D J and Markham M 2016 Phys. Rev. X 6 021040
[5]Humphreys P C, Kalb N, Morits J P, Schouten R N, Vermeulen R F, Twitchen D J, Markham M and Hanson R 2018 Nature 558 268
[6]Childress L and Hanson R 2013 MRS Bull. 38 134
[7]Dutt M G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A, Hemmer P and Lukin M 2007 Science 316 1312
[8]Pfaff W, Hensen B, Bernien H, S B Van Dam, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J 2014 Science 345 532
[9]S B Van Dam, Humphreys P C, Rozpkedek F, Wehner S and Hanson R 2017 Quantum Sci. Technol. 2 034002
[10]Abobeih M H, Cramer J, Bakker M A, Kalb N, Markham M, Twitchen D and Taminiau T H 2018 Nat. Commun. 9 2552
[11]Taminiau T H, Wagenaar J J T, T van der Sar, Jelezko F, Dobrovitski V V and Hanson R 2012 Phys. Rev. Lett. 109 137602
[12]Taminiau T H, Cramer J, T van der Sar, Dobrovitski V V and Hanson R 2014 Nat. Nanotechnol. 9 171
[13]Goldman M L, Sipahigil A, Doherty M W, Yao N Y, Bennett S D, Markham M, Twitchen D J, Manson N B, Kubanek A and Lukin M D 2015 Phys. Rev. Lett. 114 145502
[14]Casanova J, Wang Z Y and Plenio M B 2017 Phys. Rev. A 96 032314
[15]Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M 2017 Nature 551 579
[16]Kelly J, Barends R, Fowler A G, Megrant A, Jeffrey E, White T C, Sank D, Mutus J Y, Campbell B, Chen Y 2015 Nature 519 66
[17]Ibm makes quantum computing available on ibm cloud
[18]Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J 2019 Science 365 574
[19]Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y 2019 Science 364 753
[20]Cramer J, Kalb N, Rol M A, Hensen B, Blok M S, Markham M, Twitchen D J, Hanson R and Taminiau T H 2016 Nat. Commun. 7 11526
[21]Maletinsky P, Hong S, Grinolds M S, Hausmann B, Lukin M D, Walsworth R L, Loncar M and Yacoby A 2012 Nat. Nanotechnol. 7 320
[22]Schirhagl R, Chang K, Loretz M and Degen C L 2014 Annu. Rev. Phys. Chem. 65 83
[23]Lovchinsky I, Sushkov A O, Urbach E, N P de Leon, Choi S, K De Greve, Evans R, Gertner R, Bersin E, Muller C 2016 Science 351 836
[24]Boss J M, Cujia K S, Zopes J and Degen C L 2017 Science 356 837
[25]Schmitt S, Gefen T, Sturner F M, Unden T, Wolff G, Muller C, Scheuer J, Naydenov B, Markham M, Pezzagna S 2017 Science 356 832
[26]Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[27]Dolde F, Bergholm V, Wang Y, Jakobi I, Naydenov B, Pezzagna S, Meijer J, Jelezko F, Neumann P, Schulte-Herbrüggen T 2014 Nat. Commun. 5 3371
[28]Arroyo-Camejo S, Lazariev A, Hell S W and Balasubramanian G 2014 Nat. Commun. 5 4870
[29]G De Lange, Wang Z, Riste D, Dobrovitski V and Hanson R 2010 Science 330 60
[30]Naydenov B, Dolde F, Hall L T, Shin C, Fedder H, Hollenberg L C L, Jelezko F and Wrachtrup J 2011 Phys. Rev. B 83 081201
[31]Pham L M, Bar-Gill N, Belthangady C, D Le Sage, Cappellaro P, Lukin M D, Yacoby A and Walsworth R L 2012 Phys. Rev. B 86 045214
[32]Liu G Q, Po H C, Du J, Liu R B and Pan X Y 2013 Nat. Commun. 4 2254
[33]Bernien H, Hensen B, Pfaff W, Koolstra G, Blok M, Robledo L, Taminiau T, Markham M, Twitchen D, Childress L 2013 Nature 497 86
[34]Kalb N, Reiserer A A, Humphreys P C, Bakermans J J, Kamerling S J, Nickerson N H, Benjamin S C, Twitchen D J, Markham M and Hanson R 2017 Science 356 928
[35]Bonato C, Blok M S, Dinani H T, Berry D W, Markham M L, Twitchen D J and Hanson R 2016 Nat. Nanotechnol. 11 247
[36]Cappellaro P 2012 Phys. Rev. A 85 030301
[37]Griffiths R B and Niu C S 1996 Phys. Rev. Lett. 76 3228
[38]Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F and Duan L M 2014 Nature 514 72
[39]Rong X, Geng J, Shi F, Liu Y, Xu K, Ma W, Kong F, Jiang Z, Wu Y and Du J 2015 Nat. Commun. 6 8748
[40]Bradley C E, Randall J, Abobeih M H, Berrevoets R C, Degen M J, Bakker M A, Markham M, Twitchen D J and Taminiau T H 2019 Phys. Rev. X 9 031045
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 100303
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 100303
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 100303
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 100303
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 100303
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 100303
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 100303
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 100303
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 100303
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 100303
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 100303
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 100303
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 100303
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 100303
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 100303
Viewed
Full text


Abstract