Chin. Phys. Lett.  2019, Vol. 36 Issue (1): 017402    DOI: 10.1088/0256-307X/36/1/017402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Disappearance of Superconductivity and a Concomitant Lifshitz Transition in Heavily Overdoped Bi$_2$Sr$_2$CuO$_{6}$ Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy
Ying Ding1,2, Lin Zhao1**, Hong-Tao Yan1,2, Qiang Gao1,2, Jing Liu1,2, Cheng Hu1,2, Jian-Wei Huang1,2, Cong Li1,2, Yu Xu1,2, Yong-Qing Cai1,2, Hong-Tao Rong1,2, Ding-Song Wu1,2, Chun-Yao Song1,2, Hua-Xue Zhou1, Xiao-Li Dong1,2, Guo-Dong Liu1, Qing-Yan Wang1, Shen-Jin Zhang3, Zhi-Min Wang3, Feng-Feng Zhang3, Feng Yang3, Qin-Jun Peng3, Zu-Yan Xu3, Chuang-Tian Chen3, X. J. Zhou1,2,4,5**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
4Songshan Lake Materials Laboratory, Dongguan 523808
5Collaborative Innovation Center of Quantum Matter, Beijing 100871
Download: PDF(1701KB)   PDF(mobile)(1681KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By partially doping Pb to effectively suppress the superstructure in single-layered cuprate Bi$_2$Sr$_2$CuO$_{6+\delta}$ (Pb-Bi2201) and annealing them in vacuum or in high pressure oxygen atmosphere, a series of high quality Pb-Bi2201 single crystals are obtained with $T_{\rm c}$ covering from 17 K to non-superconducting in the overdoped region. High resolution angle resolved photoemission spectroscopy measurements are carried out on these samples to investigate the evolution of the Fermi surface topology with doping in the normal state. Clear and complete Fermi surfaces are observed and quantitatively analyzed in all of these overdoped Pb-Bi2201 samples. A Lifshitz transition from hole-like Fermi surface to electron-like Fermi surface with increasing doping is observed at a doping level of $\sim$0.35. This transition coincides with the change that the sample undergoes superconducting-to-non-superconducting states. Our results reveal the emergence of an electron-like Fermi surface and the existence of a Lifshitz transition in heavily overdoped Bi2201 samples. This provides important information in understanding the connection between the disappearance of superconductivity and the Lifshitz transition in the overdoped region.
Received: 26 November 2018      Published: 25 December 2018
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  74.72.Dn  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2017YFA0302900, the Strategic Priority Research Program (B) of Chinese Academy of Sciences under Grant Nos XDB07020300 and XDB25000000, the National Basic Research Program of China under Grant No 2015CB921300, the National Natural Science Foundation of China under Grant Nos 11334010 and 11534007, and the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2017013.
TRENDMD:   
Cite this article:   
Ying Ding, Lin Zhao, Hong-Tao Yan et al  2019 Chin. Phys. Lett. 36 017402
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/36/1/017402       OR      http://cpl.iphy.ac.cn/Y2019/V36/I1/017402
[1]Gurvitch M and Fiory A T 1987 Phys. Rev. Lett. 59 1337
[2]Hwang H Y et al 1994 Phys. Rev. Lett. 72 2636
[3]Harris J M et al 1995 Phys. Rev. Lett. 75 1391
[4]Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
[5]Marshall D S et al 1996 Phys. Rev. Lett. 76 4841
[6]Norman M R, Ding H et al 1998 Nature 392 157
[7]Shen K M et al 2005 Science 307 901
[8]Kanigel A et al 2006 Nat. Phys. 2 447
[9]Lee W S et al 2007 Phys. Rev. B 75 195116
[10]Yang H B et al 2008 Nature 456 77
[11]Leyraud N D et al 2007 Nature 447 565
[12]Bangura A F et al 2008 Phys. Rev. Lett. 100 047004
[13]Yelland E A et al 2008 Phys. Rev. Lett. 100 047003
[14]Meng J Q et al 2009 Nature 462 335
[15]Chaterjee U et al 2011 Proc. Natl. Acad. Sci. USA 108 9346
[16]Keimer B et al 2015 Nature 518 179
[17]Manako T et al 1992 Phys. Rev. B 46 11019
[18]Mackenzie A P et al 1996 Phys. Rev. B 53 5848
[19]Zhao L et al 2010 Chin. Phys. Lett. 27 087401
[20]Zhou X J et al 2002 J. Electron Spectrosc. Relat. Phenom. 126 145
[21]Yoshida T et al 2006 Phys. Rev. B 74 224510
[22]Feng D L et al 2001 Phys. Rev. Lett. 86 5550
[23]Chuang Y D et al 2001 Phys. Rev. Lett. 87 117002
[24]Barnes S E and Maekawa S 2003 Phys. Rev. B 67 224513
[25]Liu G D et al 2008 Rev. Sci. Instrum. 79 023105
[26]Nakamae S et al 2003 Phys. Rev. B 68 100502
[27]Koitzsch A et al 2004 Phys. Rev. B 69 220505
[28]Nakamaya K et al 2006 Phys. Rev. B 74 054505
[29]Mans A et al 2006 Phys. Rev. Lett. 96 107007
[30]Lifshitz I M et al 1960 Sov. Phys. JETP 2 831
[31]Liu C et al 2010 Nat. Phys. 6 419
[32]Benhabib S et al 2015 Phys. Rev. Lett. 114 147001
[33]Shi X et al 2017 Nat. Commun. 8 14988
Related articles from Frontiers Journals
[1] Cheng Hu, Jian-Fa Zhao, Ying Ding, Jing Liu, Qiang Gao, Lin Zhao, Guo-Dong Liu, Li Yu, Chang-Qing Jin, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Evidence for Multiple Underlying Fermi Surface and Isotropic Energy Gap in the Cuprate Parent Compound Ca$_2$CuO$_2$Cl$_2$[J]. Chin. Phys. Lett., 2018, 35(6): 017402
[2] Xuan Sun, Wen-Tao Zhang, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Qin-Jun Peng, Zhi-Min Wang, Shen-Jin Zhang, Feng Yang, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(1): 017402
[3] Chen-Lu Wang, Yan Zhang, Jian-Wei Huang, Guo-Dong Liu, Ai-Ji Liang, Yu-Xiao Zhang, Bing Shen, Jing Liu, Cheng Hu, Ying Ding, De-Fa Liu, Yong Hu, Shao-Long He, Lin Zhao, Li Yu, Jin Hu, Jiang Wei, Zhi-Qiang Mao, You-Guo Shi, Xiao-Wen Jia, Feng-Feng Zhang, Shen-Jin Zhang, Feng Yang, Zhi-Min Wang, Qin-Jun Peng, Zu-Yan Xu , Chuang-Tian Chen, Xing-Jiang Zhou. Evidence of Electron-Hole Imbalance in WTe$_2$ from High-Resolution Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2017, 34(9): 017402
[4] Pai Xiang, Ji-Shan Liu, Ming-Ying Li, Hai-Feng Yang, Zheng-Tai Liu, Cong-Cong Fan, Da-Wei Shen , Zhen Wang, Zhi Liu. In Situ Electronic Structure Study of Epitaxial Niobium Thin Films by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2017, 34(7): 017402
[5] Jun Ma, Bin-Bin Fu, Jun-Zhang Ma, Ling-Yuan Kong, Di Chen, Ji-Feng Shao, Chang-Jin Zhang, Tian Qian, Yu-Heng Zhang, Hong Ding. Experimental Investigation of Electronic Structure of La(O,F)BiSe$_{2}$[J]. Chin. Phys. Lett., 2016, 33(12): 017402
[6] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 017402
[7] De-Fa Liu, Lin Zhao, Shao-Long He, Yong Hu, Bing Shen, Jian-Wei Huang, Ai-Ji Liang, Yu Xu, Xu Liu, Jun-Feng He, Dai-Xiang Mou, Shan-Yu Liu, Hai-Yun Liu, Guo-Dong Liu, Wen-Hao Zhang, Fang-Sen Li, Xu-Cun Ma, Qi-Kun Xue, Xian-Hui Chen, Gen-Fu Chen, Li Yu, Jun Zhang, Zu-Yan Xu, Chuang-Tian Chen, Xing-Jiang Zhou. Common Electronic Features and Electronic Nematicity in Parent Compounds of Iron-Based Superconductors and FeSe/SrTiO$_3$ Films Revealed by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(07): 017402
[8] LIANG Yi, WU Xian-Xin, HU Jiang-Ping. Electronic Structure Properties in the Nematic Phases of FeSe[J]. Chin. Phys. Lett., 2015, 32(11): 017402
[9] XU Di-Fei, DU Yong-Ping, WANG Zhen, LI Yu-Peng, NIU Xiao-Hai, YAO Qi, Dudin Pavel, XU Zhu-An, WAN Xian-Gang, FENG Dong-Lai. Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP[J]. Chin. Phys. Lett., 2015, 32(10): 017402
[10] KONG Wan-Dong, MIAO Hu, QIAN Tian, WANG Zhi-Jun, XU Gang, FANG Ai-Fang, HUANG Yao-Bo, ZHANG Peng, SHI Xun, FANG Zhong, DAI Xi, RICHARD Pierre, WANG Nan-Lin, DING Hong. Surface State Bands in Superconducting (PtxIr1−x)Te2[J]. Chin. Phys. Lett., 2015, 32(07): 017402
[11] LIU Yan, ZHAO Jian-Zhou, YU Li, LIN Cheng-Tian, LIANG Ai-Ji, HU Cheng, DING Ying, XU Yu, HE Shao-Long, ZHAO Lin, LIU Guo-Dong, DONG Xiao-Li, ZHANG Jun, CHEN Chuang-Tian, XU Zu-Yan, WENG Hong-Ming, DAI Xi, FANG Zhong, ZHOU Xing-Jiang. Identification of Topological Surface State in PdTe2 Superconductor by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2015, 32(06): 017402
[12] XU Min, WANG Li-Min, PENG Rui, GE Qing-Qin, CHEN Fei, YE Zi-Rong, ZHANG Yan, CHEN Su-Di, XIA Miao, LIU Rong-Hua, Arita M., Shimada K., Namatame H., Taniguchi M., Matsunami M., Kimura S., SHI Ming, CHEN Xian-Hui, YIN Wei-Guo, KU Wei, XIE Bin-Ping, FENG Dong-Lai. Electronic Structure Reconstruction across the Antiferromagnetic Transition in TaFe1.23Te3 Spin Ladder[J]. Chin. Phys. Lett., 2015, 32(02): 017402
[13] SHI Ying-Bo, HUANG Yao-Bo, WANG Xiao-Ping, SHI Xun, ROEKEGHEM A-Van, ZHANG Wei-Lu, XU Na, RICHARD Pierre, QIAN Tian, RIENKS Emile, THIRUPATHAIAH S, ZHAO Kan, JIN Chang-Qing, SHI Ming, DING Hong. Observation of Strong-Coupling Pairing with Weakened Fermi-Surface Nesting at Optimal Hole Doping in Ca0.33Na0.67Fe2As2[J]. Chin. Phys. Lett., 2014, 31(06): 017402
[14] WANG Fang-Fang, WEI Peng-Yue, DING Xue-Yong, XING Xian-Ran, CHEN Xing-Qiu. Towards a Mechanism Underlying the Stability of the Tetragonal CuO Phase: Comparison with NiO and CoO by Hybrid Density Functional Calculation[J]. Chin. Phys. Lett., 2014, 31(2): 017402
[15] LIU Xu, LIU De-Fa, ZHAO Lin, GUO Qi, MU Qing-Ge, CHEN Dong-Yun, SHEN Bing, YI He-Mian, HUANG Jian-Wei, HE Jun-Feng, PENG Ying-Ying, LIU Yan, HE Shao-Long, LIU Guo-Dong, DONG Xiao-Li, ZHANG Jun, CHEN Chuang-Tian, XU Zu-Yan, REN Zhi-An, ZHOU Xing-Jiang. Fermi Surface and Band Structure of (Ca,La)FeAs2 Superconductor from Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2013, 30(12): 017402
Viewed
Full text


Abstract