Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 097101    DOI: 10.1088/0256-307X/35/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Non-Stoichiometry Effects on the Extreme Magnetoresistance in Weyl Semimetal WTe$_{2}$
Ji-Xiang Gong1,2, Jun Yang1, Min Ge2**, Yong-Jian Wang1, Dan-Dan Liang1, Lei Luo1, Xiu Yan1, Wei-Li Zhen1, Shi-Rui Weng1, Li Pi1,2, Chang-Jin Zhang1,3**, Wen-Ka Zhu1**
1High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031
2Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026
3Institute of Physical Science and Information Technology, Anhui University, Hefei 230601
Cite this article:   
Ji-Xiang Gong, Jun Yang, Min Ge et al  2018 Chin. Phys. Lett. 35 097101
Download: PDF(1017KB)   PDF(mobile)(1008KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Non-stoichiometry effect on the extreme magnetoresistance is systematically investigated for the Weyl semimetal WTe$_{2}$. Magnetoresistance and Hall resistivity are measured for the as-grown samples with a slight difference in Te vacancies and the annealed samples with increased Te vacancies. The fits to a two-band model show that the magnetoresistance is strongly dependent on the residual resistivity ratio (i.e., the degree of non-stoichiometry), which is eventually understood in terms of electron doping that not only breaks the balance between electron-type and hole-type carrier densities, but also reduces the average carrier mobility. Thus the compensation effect and ultrahigh mobility are probably the main driving force of the extreme magnetoresistance in WTe$_{2}$.
Received: 25 May 2018      Published: 29 August 2018
PACS:  71.55.Ak (Metals, semimetals, and alloys)  
  73.43.Qt (Magnetoresistance)  
  72.20.Fr (Low-field transport and mobility; piezoresistance)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
Fund: Supported by the National Key R&D Program of China under Grant Nos 2016YFA0300404 and 2017YFA0403600, the National Natural Science Foundation of China under Grant Nos 51603207, U1532267, 11574288 and 11674327, and the Natural Science Foundation of Anhui Province under Grant No 1708085MA08.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/097101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/097101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ji-Xiang Gong
Jun Yang
Min Ge
Yong-Jian Wang
Dan-Dan Liang
Lei Luo
Xiu Yan
Wei-Li Zhen
Shi-Rui Weng
Li Pi
Chang-Jin Zhang
Wen-Ka Zhu
[1]Baibich M N et al 1988 Phys. Rev. Lett. 61 2472
[2]Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583
[3]Lenz J E 1990 Proc. IEEE 78 973
[4]Moritomo Y et al 1996 Nature 380 141
[5]Daughton J M 1999 J. Magn. Magn. Mater. 192 334
[6]Pippard A B 1989 Magnetoresistance in Metals (Cambridge: Cambridge University Press)
[7]Liang T et al 2015 Nat. Mater. 14 280
[8]He L P and Li S Y 2016 Chin. Phys. B 25 117105
[9]Zhang C L et al 2015 Phys. Rev. B 92 041203
[10]Yang J et al 2018 arXiv:1807.06229
[11]Ali M N et al 2014 Nature 514 205
[12]Wang Y J et al 2018 arXiv:1801.05929
[13]Mun E et al 2012 Phys. Rev. B 85 035135
[14]Wang Y J et al 2018 J. Phys.: Condens. Matter 30 155701
[15]Pavlosiuk O, Swatek P and Wiśniewski P 2016 Sci. Rep. 6 38691
[16]Tafti F F et al 2016 Nat. Phys. 12 272
[17]Wang Y et al 2018 Phys. Rev. B 97 115133
[18]Liang D D et al 2018 APL Mater. 6 086105
[19]Wang Z et al 2013 Phys. Rev. B 88 125427
[20]Soluyanov A A et al 2015 Nature 527 495
[21]Guo P J et al 2016 Phys. Rev. B 93 235142
[22]He J et al 2016 Phys. Rev. Lett. 117 267201
[23]Pletikosic I et al 2014 Phys. Rev. Lett. 113 216601
[24]Zhu Z W et al 2015 Phys. Rev. Lett. 114 176601
[25]Pan X C et al 2017 Front. Phys. 12 127203
[26]Luo Y K et al 2015 Appl. Phys. Lett. 107 182411
[27]Jiang J et al 2015 Phys. Rev. Lett. 115 166601
[28]Das P K et al 2016 Nat. Commun. 7 10847
[29]Wang L et al 2015 Nat. Commun. 6 8892
[30]Wang Y et al 2016 Phys. Rev. B 93 121108
[31]Fatemi V et al 2017 Phys. Rev. B 95 041410
[32]Ali M N et al 2015 Europhys. Lett. 110 67002
[33]Lv Y Y et al 2017 Phys. Rev. Lett. 118 096603
[34]Oinuma H et al 2017 Phys. Rev. B 96 041120
Related articles from Frontiers Journals
[1] Guangqiang Wang, Guoqing Chang, Huibin Zhou, Wenlong Ma, Hsin Lin, M. Zahid Hasan, Su-Yang Xu, and Shuang Jia. Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$[J]. Chin. Phys. Lett., 2020, 37(10): 097101
[2] Can Tian, Xiao-li Huang, Yan-ping Huang, Xin Li, Di Zhou, Xin Wang, Tian Cui. High-Pressure Behavior of Nano-Pt in Hydrogen Environment[J]. Chin. Phys. Lett., 2019, 36(10): 097101
[3] Min Wu, Hongwei Zhang, Xiangde Zhu, Jianwei Lu, Guolin Zheng, Wenshuai Gao, Yuyan Han, Jianhui Zhou, Wei Ning, Mingliang Tian. Contactless Microwave Detection of Shubnikov–De Haas Oscillations in Three-Dimensional Dirac Semimetal ZrTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(6): 097101
[4] Xin-Min Wang, Ling-Xiao Zhao, Jing Li, Mo-Ran Gao, Wen-Liang Zhu, Chao-Yang Ma, Yi-Yan Wang, Shuai Zhang, Zhi-An Ren, Gen-Fu Chen. Negative Longitudinal Magnetoresistance in the $c$-Axis Resistivity of Cd[J]. Chin. Phys. Lett., 2019, 36(5): 097101
[5] Fei Sun, M. Yang, M. W. Yang, Q. Wu, H. Zhao, X. Ye, Youguo Shi, Jimin Zhao. Coherent Acoustic Phonon and Its Chirping in Dirac Semimetal Cd$_{3}$As$_{2}$[J]. Chin. Phys. Lett., 2018, 35(11): 097101
[6] Moran Gao, Junbao He, Wenliang Zhu, Shuai Zhang, Xinmin Wang, Jing Li, Chaoyang Ma, Hui Liang, Zhian Ren, Genfu Chen. Magnetotransport Properties of a Nodal Line Semimetal TiSi[J]. Chin. Phys. Lett., 2018, 35(11): 097101
[7] Wei Cheng, Yan-Long Fu, Min-Ju Ying, Feng-Shou Zhang. Electronic Properties of Defects Induced by H Irradiation in Tantalum Phosphide[J]. Chin. Phys. Lett., 2017, 34(12): 097101
[8] Jian-Peng Sun. Topological Nodal Line Semimetal in Non-Centrosymmetric PbTaS$_2$[J]. Chin. Phys. Lett., 2017, 34(7): 097101
[9] Jin-Lian Lu, Wei Luo, Xue-Yang Li, Sheng-Qi Yang, Jue-Xian Cao, Xin-Gao Gong, Hong-Jun Xiang. Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice[J]. Chin. Phys. Lett., 2017, 34(5): 097101
[10] XU Di-Fei, DU Yong-Ping, WANG Zhen, LI Yu-Peng, NIU Xiao-Hai, YAO Qi, Dudin Pavel, XU Zhu-An, WAN Xian-Gang, FENG Dong-Lai. Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP[J]. Chin. Phys. Lett., 2015, 32(10): 097101
[11] ZHANG Jun, LIU Feng-Liang, DONG Jin-Kui, XU Yang, LI Na-Na, YANG Wen-Ge, LI Shi-Yan. Structural and Transport Properties of the Weyl Semimetal NbAs at High Pressure[J]. Chin. Phys. Lett., 2015, 32(09): 097101
[12] RAO Jian-Ping, OUYANG Chu-Ying**, LEI Min-Sheng, JIANG Feng-Yi . Vacancy and H Interactions in Nb[J]. Chin. Phys. Lett., 2011, 28(12): 097101
[13] WANG Yong, **, YU Nai-Sen, LI Ming, LAU Kei-May . Improved AlGaN/GaN HEMTs Grown on Si Substrates Using Stacked AlGaN/AlN Interlayer by MOCVD[J]. Chin. Phys. Lett., 2011, 28(5): 097101
[14] YANG Ling, MA Jing-Jing, ZHU Cheng, HAO Yue, MA Xiao-Hua. Degradation of AlGaN/GaN High Electron Mobility Transistors with Different AlGaN Layer Thicknesses under Strong Electric Field[J]. Chin. Phys. Lett., 2010, 27(2): 097101
[15] YANG Ling, HAO Yue, MA Xiao-Hua, QUAN Si, HU Gui-Zhou, JIANG Shou-Gao, YANG Li-Yuan. Various Recipes of SiNx Passivated AlGaN/GaN High Electron Mobility Transistors in Correlation with Current Slump[J]. Chin. Phys. Lett., 2009, 26(11): 097101
Viewed
Full text


Abstract