Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 087101    DOI: 10.1088/0256-307X/35/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Combined Effect of Uniaxial Strain and Magnetic Field on the Exciton States in Semiconducting Single-Walled Carbon Nanotubes
Xin-Yue Zhang1, Gui-Li Yu1**, Li-Hua Wang2, Gang Tang1
1School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116
2School of Mines, China University of Mining and Technology, Xuzhou 221116
Cite this article:   
Xin-Yue Zhang, Gui-Li Yu, Li-Hua Wang et al  2018 Chin. Phys. Lett. 35 087101
Download: PDF(620KB)   PDF(mobile)(610KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The exciton states of semiconducting carbon nanotubes are calculated by a tight-binding model supplemented by Coulomb interactions under the combined effect of uniaxial strain and magnetic field. It is found that the excitation energies and absorption spectra of zigzag tubes (11,0) and (10,0) show opposite trends with the strain under the action of the magnetic field. For the (11,0) tube, the excitation energy decreases with the increasing uniaxial strain, with a splitting appearing in the absorption spectra. For the (10,0) tube, the variation trend firstly increases and then decreases, with a reversal point appearing in the absorption spectra. More interesting, at the reversal point the intensity of optical absorption is the largest because of the degeneracy of the two bands nearest to the Fermi Level, which is expected to be observed in the future experiment. The similar variation trend is also exhibited in the binding energy for the two kinds of semiconducting tubes.
Received: 23 April 2018      Published: 15 July 2018
PACS:  71.35.-y (Excitons and related phenomena)  
  78.55.-m (Photoluminescence, properties and materials)  
  78.67.Ch (Nanotubes)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11304378, and the Fundamental Research Funds for the Central Universities under Grant No 2017XKQY093.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/087101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/087101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin-Yue Zhang
Gui-Li Yu
Li-Hua Wang
Gang Tang
[1]Iijima S and Ichihashi T 1993 Nature 363 603
[2]Bethune T W, Kiang C H, Deviries M S, Gorman G, Savoy R, Vazquez J and Beyers R 1993 Nature 363 605
[3]Lu J P 1997 Phys. Rev. Lett. 79 1297
[4]Herandex E, Goze C, Bernier P and Rubio A 1998 Phys. Rev. Lett. 80 4502
[5]Palaci I, Fedrigo S, Brune H, Klinke C, Chen M and Riedo E 2005 Phys. Rev. Lett. 94 175502
[6]Chen J W, Cagin T and Goddard W A 2000 Nanotechnology 11 65
[7]Collins P G, Arnold M S and Avouris P 2001 Science 292 706
[8]Berber S, Kwon Y K and Tomanek D 2000 Phys. Rev. Lett. 84 4613
[9]Perdew J P and Burke K 1996 Phys. Rev. Lett. 77 3865
[10]Li Z M, Tang Z K, Liu H J, Wang N, Chan C T, Saito R, Okada S, Li G D, Chen J S, Nagasawa N and Tsuda S 2001 Phys. Rev. Lett. 87 127401
[11]Ajiki H and Ando T 1994 Physica B 201 349
[12]Hagen A and Hertel T 2003 Nano Lett. 3 383
[13]Lebedkin S, Hennrich F, Skipa T and Kappes M M 2003 Phys. Chem. B 107 1949
[14]Lefebvre J, Homma Y and Finnie P 2003 Phys. Rev. Lett. 90 217401
[15]Spataru C D, Ismail-Beigi S, Capaz R B and Louie S G 2005 Phys. Rev. Lett. 95 247402
[16]Zhao H and Mazumdar S 2004 Phys. Rev. Lett. 93 157402
[17]Kane C L and Mele E J 2003 Phys. Rev. Lett. 90 207401
[18]Perebeinos V, Tersoff J and Avouris P 2005 Nano Lett. 5 2495
[19]Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E and Weisman R B 2002 Science 298 2361
[20]Perebeinos V, Tersoff J and Avouris P 2004 Phys. Rev. Lett. 92 257402
[21]May P, Telg H, Zhong G F, Robertson J, Thomsen C and Maultzsch J 2010 Phys. Rev. B 82 195412
[22]Jonah S, Junichiro K, Oliver P, Vojislav K, Geert L J A R, Yuhei M, Shigeo M and Vasili P 2007 Nano Lett. 7 1851
[23]Jiang H, Wu G, Yang X and Dong J M 2004 Phys. Rev. B 70 125404
[24]Brenner D W, Schall J D, Mewkill J P, Shenderova D A and Sinnott S B 1998 Interplanet. Soc. 51 137
[25]Zeng H, Zhao H, Zhang F C and Cui X 2009 Phys. Rev. Lett. 102 136406
[26]Yang L, Anantram M P, Han J and Lu J P 1999 Phys. Rev. B 60 13874
[27]Kane C L and Mele E J 1997 Phys. Rev. Lett. 78 1932
[28]Bu W, Jiang J and Dong J M 2002 Phys. Lett. A 302 125
[29]Jiang H, Zhang Y, Yu G L and Dong J M 2006 Phys. Lett. A 351 308
[30]Heyd R, Charlier A and McRae E 1997 Phys. Rev. B 55 6820
[31]Zhou J, Weng H M, Wu G and Dong J M 2006 Appl. Phys. Lett. 89 013102
[32]Cao J, Wang Q, Rolandi M and Dai H J 2004 Phys. Rev. Lett. 93 216803
[33]Zhang Y, Yu G L and Dong J M 2006 Phys. Rev. B 73 205419
[34]Zaric S, Ostojic G N, Kono J, Shaver J, Moore V C, Strano M S, Hauge R H, Smalley R E and Wei X 2004 Science 304 1129
[35]Zaric S, Ostojic G N, Shaver J, Kono J, Portugall O, Frings P H, Rikken G L J A, Furis M, Crooker S A, Wei X, Moore V C, Hauge R H and Smalley R E 2006 Phys. Rev. Lett. 96 016406
[36]Orr B J and Ward J F 1971 Mol. Phys. 20 513
[37]Yu G L, Li G C, Jia Y L and Tang G 2014 Chin. Phys. Lett. 31 097102
[38]Yu G L, Jia Y L and Dong J M 2007 Phys. Rev. B 76 125403
Related articles from Frontiers Journals
[1] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 087101
[2] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 087101
[3] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 087101
[4] Yan Lu, Wen-Gang Lu, Li Wang. Structure Dependence of Excitonic Effects in Chiral Graphene Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(1): 087101
[5] Gui-Li Yu, Yong-Lei Jia, Gang Tang. Splitting Phenomenon Induced by Magnetic Field in Metallic Carbon Nanotubes[J]. Chin. Phys. Lett., 2016, 33(03): 087101
[6] YU Gui-Li, LI Gui-Chen, JIA Yong-Lei, TANG Gang. States of Excitons and Linear Optical Spectra in Metallic Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2014, 31(09): 087101
[7] ZHANG Yan-Fei, ZHAO Su-Ling, XU Zheng, KONG Chao. The Formation of Exciplex and Improved Turn-on Voltage in a Hybrid Organic-Inorganic Light-Emitting Diode[J]. Chin. Phys. Lett., 2012, 29(11): 087101
[8] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 087101
[9] CHU Sai-Sai, GAO Chao, WANG Shu-Feng**, GONG Qi-Huang** . Ultrafast Dynamics of Polythiophene with Phenyl Vinylene Branches Studied by Femtosecond Fluorescence Spectroscopy in Solution[J]. Chin. Phys. Lett., 2011, 28(11): 087101
[10] LI Xiu-Ping, WEI Hua-Rong, XU Li-Ping, GONG Jian-Ping, YAN Wei-Xian . Tunneling Processes in Optically Excited Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(10): 087101
[11] WU Cong-Jun**, Ian Mondragon-Shem, , ZHOU Xiang-Fa . Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(9): 087101
[12] ZHAO Hong-Xia, ZHAO Hui**, CHEN Yu-Guang . Dynamical Process of Dissociation of Excitons in Polymer Chains with Impurities[J]. Chin. Phys. Lett., 2011, 28(9): 087101
[13] YANG Shao-Peng**, HUANG Da, GE Da-Yong, LIU Bo-Ya, WANG Li-Shun, FU Guang-Sheng . Dynamics of Exciton Diffusion in PVK:Phosphorescent Materials/Al Hetero-Structures[J]. Chin. Phys. Lett., 2011, 28(8): 087101
[14] KIM Nam-Chol, LI Jian-Bo, LIU Shao-Ding, CHENG Mu-Tian, HAO Zhong-Hua. Influence of Excitation Pulse Width on the Second-Order Correlation Functions of the Exciton-Biexciton Emissions[J]. Chin. Phys. Lett., 2010, 27(3): 087101
[15] SHU Shi-Wei, MA Guo-Hong. Temperature-Dependent Defect-Induced New Emission in ZnSe Crystal[J]. Chin. Phys. Lett., 2009, 26(4): 087101
Viewed
Full text


Abstract