Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 086501    DOI: 10.1088/0256-307X/35/8/086501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
High Performance ZrNbAl Alloy with Low Thermal Expansion Coefficient
Yun-Kai Zhou1,2**, Xing Zhang2, Shu-Guang Liu2, Ming-Zhen Ma2, Ri-Ping Liu2**
1School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004
2State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
Cite this article:   
Yun-Kai Zhou, Xing Zhang, Shu-Guang Liu et al  2018 Chin. Phys. Lett. 35 086501
Download: PDF(1098KB)   PDF(mobile)(1096KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thermal expansion is a common phenomenon in both metals and alloys, which is important for metallic material applications in modern industry, especially in nuclear and aerospace industries. A lower thermal expansion coefficient may cause lower thermal stress and higher accuracy. A new Zr-based alloy is developed and presented. The XRD diffraction results demonstrate that only a close-packed hexagonal phase ($\alpha$ or $\alpha'$ phase) exists in the microstructure. The thermal expansion and mechanical properties are studied. According to the experimental results, the new Zr-based alloy presents a low thermal expansion coefficient and good mechanical properties. Also, its thermal expansion coefficient is stable through solution treatment.
Received: 08 April 2018      Published: 15 July 2018
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  64.70.kd (Metals and alloys)  
  62.20.M- (Structural failure of materials)  
  81.40.Cd (Solid solution hardening, precipitation hardening, and dispersion hardening; aging)  
Fund: Supported by the Postdoctoral Science Foundation of Hebei Province under Grant No B2017003008, the National Natural Science Foundation of China under Grant Nos 51531005, 51671166, 51571174 and 51604241, and the Natural Science Foundation of Hebei Province under Grant No E2016203395.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/086501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/086501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yun-Kai Zhou
Xing Zhang
Shu-Guang Liu
Ming-Zhen Ma
Ri-Ping Liu
[1]Yuan X J, Sheng G M and Qin B 2008 Mater. Charact. 59 930
[2]Yu X, Wang C B, Jiang G W, Liu H S and Hu M 2004 Vacuum 72 461
[3]Ivasishin O M, Markovsky P E, Matviychuk Y V and Semiatin S L 2003 Metall. Mater. Trans. A 34 147
[4]Schutz R W and Watkins H B 1998 Mater. Sci. & Eng. A 243 305
[5]Suyalatu, Nomura N, Oya Y, Tanaka Y, Kondo R, Doi H, Tsutsumi Y and Hanawa T 2010 Acta Biomater. 6 1033
[6]Tewari R, Srivastava D, Dey G K, Chakravarty J K and Banerjee S 2008 J. Nucl. Mater. 383 153
[7]Hsu H C, Wu S C, Sung Y C and Ho W F 2009 J. Alloys Compd. 488 279
[8]Sun B R, Zhan Z J, Liang B, Zhang R J and Wang W K 2012 Chin. Phys. B 21 056101
[9]Zhou Y K, Jing R, Ma M Z and Liu R P 2013 Chin. Phys. Lett. 30 116201
[10]Zhou Y K, Feng Z H, Xia C Q, Liu W C, Jing Q, Liang S X, Ma M Z, Zhang Z G, Zhang X Y and Liu R P 2016 Trans. Nonferrous Met. Soc. Chin. 26 2086
[11]Zhang Z G, Zhou Y K, Jiang X J, Feng Z H, Xia C Q, Zhang X Y, Ma M Z and Liu R P 2016 Mater. Sci. & Eng. A 651 370
[12]Jiang X J, Zhou Y K, Feng Z H, Xia C Q, Tan C L, Liang S X, Zhang X Y, Ma M Z and Liu R P 2015 Mater. Sci. & Eng. A 639 407
[13]Jiang X J, Zhou Y K, Tan C L, Ma M Z and Liu R P 2014 Mater. Des. 64 21
[14]Liang S X, Yin L X, Zhou Y K, Feng X J, Ma M Z, Liu R P and Tan C L 2014 J. Alloys Compd. 615 804
[15]Jia Y D, Cao F Y, Scudino S, Ma P, Li H C, Yu L, Eckert J and Sun J F 2014 Mater. Des. 57 585
[16]Zhou Y K, Liang S X, Jing R, Jiang X J, Ma M Z, Tan C L and Liu R P 2015 Mater. Sci. & Eng. A 621 259
[17]Leyens C and Peters M 2003 Titanium Titanium Alloys (New York: Weinheim Wiley-VCH) p 3
[18]Liang S X, Ma M Z, Jing R, Zhou Y K, Jing Q and Liu R P 2012 Mater. Sci. & Eng. A 539 42
Related articles from Frontiers Journals
[1] Meibo Tang, Xiuhong Pan , Minghui Zhang , and Haiqin Wen . Scaling Behavior between Heat Capacity and Thermal Expansion in Solids[J]. Chin. Phys. Lett., 2021, 38(2): 086501
[2] Meng Li, Yuan Li, Chun-Yan Wang, Qiang Sun. Negative Thermal Expansion of GaFe(CN)$_{6}$ and Effect of Na Insertion by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(6): 086501
[3] Qing Wang, Hai-Peng Wang, De-Lu Geng, Ming-Xing Li, Bing-Bo Wei. A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range[J]. Chin. Phys. Lett., 2018, 35(12): 086501
[4] Wei-Li Wang, Li-Jun Meng, Liu-Hui Li, Liang Hu, Kai Zhou, Zhang-Huan Kong, Bing-Bo Wei. An Experimental Study of Thermophysical Properties for Quinary High-Entropy NiFeCoCrCu/Al Alloys[J]. Chin. Phys. Lett., 2016, 33(11): 086501
[5] Zheng-Fu Cheng, Rui-Lun Zheng. Thermal Expansion and Deformation of Graphene[J]. Chin. Phys. Lett., 2016, 33(04): 086501
[6] Hai-Peng Wang, Peng Lü, Kai Zhou, Bing-Bo Wei. Thermal Expansion of Ni$_{3}$Al Intermetallic Compound: Experiment and Simulation[J]. Chin. Phys. Lett., 2016, 33(04): 086501
[7] Xiang-Hong Ge, Yan-Chao Mao, Lin Li, Li-Ping Li, Na Yuan, Yong-Guang Cheng, Juan Guo, Ming-Ju Chao, Er-Jun Liang. Phase Transition and Negative Thermal Expansion Property of ZrMnMo$_{3}$O$_{12}$[J]. Chin. Phys. Lett., 2016, 33(04): 086501
[8] ZHENG Fa-Song, DING Ying-Chun, TAN Yi-Dong, LIN Jing, ZHANG Shu-Lian. The Approach of Compensation of Air Refractive Index in Thermal Expansion Coefficients Measurement Based on Laser Feedback Interferometry[J]. Chin. Phys. Lett., 2015, 32(07): 086501
[9] CHU Li-Hua, WANG Cong, SUN Ying, LI Mei-Cheng, WAN Zi-Pei, WANG Yu, DOU Shang-Yi, CHU Yue. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chin. Phys. Lett., 2015, 32(4): 086501
[10] YUAN Bao-He, YUAN Huan-Li, SONG Wen-Bo, LIU Xian-Sheng, CHENG Yong-Guang, CHAO Ming-Ju, LIANG Er-Jun. High Solubility of Hetero-Valence Ion (Cu2+) for Reducing Phase Transition and Thermal Expansion of ZrV1.6P0.4O7[J]. Chin. Phys. Lett., 2014, 31(07): 086501
[11] ZHANG Xu-Dong, CUI Shou-Xin, SHI Hai-Feng. Theoretical Study of Thermodynamics Properties and Bulk Modulus of SiC under High Pressure and Temperature[J]. Chin. Phys. Lett., 2014, 31(1): 086501
[12] SONG Wen-Bo, LIANG Er-Jun, LIU Xian-Sheng, LI Zhi-Yuan, YUAN Bao-He, WANG Jun-Qiao. A Negative Thermal Expansion Material of ZrMgMo3O12[J]. Chin. Phys. Lett., 2013, 30(12): 086501
[13] LIU Dong-Huan, SHANG Xin-Chun. The Physical-Mechanism Based High-Temperature Thermal Contact Conductance Model with Experimental Verification[J]. Chin. Phys. Lett., 2013, 30(3): 086501
[14] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 086501
[15] LIU Xi**, LIU Wei, HE Qiang, DENG Li-Wei, WANG He-Jin, HE Duan-Wei, LI Bao-Sheng . Isotropic Thermal Expansivity and Anisotropic Compressibility of ReB2[J]. Chin. Phys. Lett., 2011, 28(3): 086501
Viewed
Full text


Abstract