Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 085101    DOI: 10.1088/0256-307X/35/8/085101
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Resistance and Reactance of Monopole Fields Induced by a Test Charge Drifting Off-Axis in a Cold and Collisional Cylindrical Plasma
M. S. Bawa'aneh1**, A. M. Al-Khateeb1, Y. -c. Ghim2
1Department of Physics, Yarmouk University, Irbid, Jordan
2Department of Nuclear and Quantum Engineering, KAIST, Daejeon, Korea
Cite this article:   
M. S. Bawa'aneh, A. M. Al-Khateeb, Y. -c. Ghim 2018 Chin. Phys. Lett. 35 085101
Download: PDF(521KB)   PDF(mobile)(523KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the electromagnetic field components at all interfaces, the induced monopole electromagnetic fields in the plasma are obtained in the frequency domain. An expression for the plasma electric resistance and reactance is derived and analyzed numerically for some representative parameters. Near the plasma resonant frequency, the plasma resistance evolves with frequency like a parallel RLC resonator with peak resistance at the plasma frequency $\omega_{\rm pe}$, while the plasma reactance can be capacitive or inductive in nature depending on the frequency under consideration.
Received: 09 January 2018      Published: 15 July 2018
PACS:  51.50.+v (Electrical properties)  
  52.50.Gj (Plasma heating by particle beams)  
  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  
  52.25.Mq (Dielectric properties)  
Fund: Supported by the Yarmouk University, and the KUSTAR–KAIST Institution Fund.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/085101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/085101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. S. Bawa'aneh
A. M. Al-Khateeb
Y. -c. Ghim
[1]Johnson C 1965 Field and Wave Electrodynamics (New York: McGraw-Hill)
[2]Shkarofsky I P et al 1966 The Particle Kinetics of Plasmas (New York: Addision-Wesley)
[3]Kral N A and Trivelpiece A W 1973 Principles of Plasma Physics (New York: McGraw-Hill)
[4]Boardman A D 1982 Electromagnetic Surface Modes (New York: Wiley)
[5]Aliev Yu M et al 2000 Guided–Wave–Produced Plasmas (Berlin: Sringer)
[6]Trivelpiece A W and Gould R W 1959 J. Appl. Phys. 30 1784
[7]Popov O A 1990 J. Vac. Sci. Technol. A 8 2909
[8]Carl D A et al 1991 J. Vac. Sci. Technol. B 9 339
[9]Asmussen J and Mak P 1994 Rev. Sci. Instrum. 65 1753
[10]Gudmundsson T J and Lieberman M A 1998 Plasma Sources Sci. Technol. 7 83
[11]Iza F and Hopwood J 2005 Plasma Sources Sci. Technol. 14 397
[12]Chen F F 2006 Plasma Sources Sci. Technol. 15 773
[13]Barov N et al 2004 Phys. Rev. Spec. Top. Accel. Beams 7 061301
[14]Al-Khateeb A, Hasse R W, Boine-Frankenheim O and Hofmann I 2008 New J. Phys. 10 083008
[15]Zimmermann F 2004 Phys. Rev. ST Accel. Beams 7 124801
[16]Zenkevich P, Mustafin N and Boine-Frankenheim O 2002 Proc. ECLOUD 2002 (Yellow Report CERN-2002-001)
[17]Chao A W 1993 Physics of Collective Beam Instability in High Energy Accelerators (New York: John Wiley & Sons)
[18]Al-Khateeb A M, Hasse R W and Boine-Frankenheim O 2008 Nucl. Instrum. Methods Phys. Res. Sect. A 593 171
[19]Ng K Y 2006 Physics of Intensity Dependent Beam Instabilities (Singapore: World Scientific Publishing Co. pte. Ltd.)
[20]Bawa'aneh M S and Boyd T J M 2007 J. Plasma Phys. 73 159
[21]Bawa'aneh M S, Al-Khateeb A M and Sawalha A S 2012 Can. J. Phys. 90 241
[22]Bawa'aneh M S, Al-Khateeb A M and Sawalha A S 2013 IEEE Trans. Plasma Sci. 41 2496
[23]Bawa'aneh M S, Ghada Assayed, Said M R and Al–Awfi S 2014 Can. J. Phys. 92 504
[24]Collin R E 1991 Field Theory of Guided Waves (New York: IEEE)
[25]Pozar D M 1990 Microwave Engineering (New York: Addison-Wesley)
[26]Dome G Basic RF Theory, Waveguides and Cavities, CERN Yellow Reports, CAS-CERN Accelerator School and Rutherford Appleton Laboratory: Course on Rf Engineering for Particle Accelerators (CERN 92-03 V0l.1, Geneva, Switzerland)
[27]Jackson J D 1998 Class. ElectroDyn. 3rd edn (New York: Wiley)
[28]Gluckstern R L 2000 CERN Yellow Report CERN 2000-011
[29]Al-Khateeb A, Boine-Frankenheim O, Hasse R and Hofmann I 2005 Phys. Rev. E 71 026501
[30]Singh Pal K and Roy S 2007 Appl. Phys. Lett. 91 081504
[31]Brouk V and Heckman R 2004 Stabilizing RF Generator Plasma Interact.: 47th Annu. Tech. Conf. Proceeding Soc. Vac. Coaters (April 24–29 Dallas TX USA) p 49
[32]Keil E 1972 Nucl. Instrum. Methods 100 419
[33]Levine J S 1984 Int. J. Infrared Millimeter Waves 5 937
[34]Al-Khateeb A, Boine-Frankenheim O, Plotnikov A, Shim, Y S and Hänichen L 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 626 1
Related articles from Frontiers Journals
[1] Xin-Feng Sun, Yan-Hui Jia, Tian-Ping Zhang, Chen-Chen Wu, Xiao-Dong Wen, Ning Guo, Hai Jin, Yu-Jun Ke, Wei-Long Guo. Effects of Three Typical Resistivity Models on Pulsed Inductive Plasma Acceleration Modeling[J]. Chin. Phys. Lett., 2017, 34(12): 085101
[2] Hong-Wei Liu, Yan-Pan Hou, Zi-Cheng Zhang, Jian Xu. Abnormal Polarity Effects of Streamer Discharge in Propylene Carbonate under Microsecond Pulses[J]. Chin. Phys. Lett., 2017, 34(7): 085101
[3] M. N. Stankov, M. D. Petković, V. Lj. Marković, S. N. Stamenković, A. P. Jovanović. The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon[J]. Chin. Phys. Lett., 2015, 32(02): 085101
[4] FU Yang-Yang, LUO Hai-Yun, ZOU Xiao-Bing, WANG Xin-Xin. Influence of Forbidden Processes on Similarity Law in Argon Glow Discharge at Low Pressure[J]. Chin. Phys. Lett., 2014, 31(07): 085101
[5] LI Shang, OUYANG Ji-Ting, HE Feng. Transition of Discharge Mode of a Local Hollow Cathode Discharge[J]. Chin. Phys. Lett., 2010, 27(6): 085101
[6] LIANG Zhuo, LUO Hai-Yun, Wang Xin-Xin, LV Bo, GUAN Zhi-Cheng, WANGLi-Ming. Determination of Ionization Coefficient of Atmospheric Helium in Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2008, 25(6): 085101
[7] CHEN Ming, LIU Xiang-Dong, SUN Yu-Ming, YANG Xin-Mei, ZHAO Ming-Wen, QI Huan-Jun, CHEN Xiu-Fang, XU Xian-Gang. Detailed Characteristics of Expansion Velocity of Si from Laser Ablated SiC[J]. Chin. Phys. Lett., 2008, 25(5): 085101
[8] LIANG Ting, GUO Xia, GUAN Bao-Lu, GUO Jing, GU Xiao-Ling, LIN Qiao-Ming, SHEN Guang-Di. A Flip-Chip AlGaInP LED with GaN/Sapphire Transparent Substrate Fabricated by Direct Wafer Bonding[J]. Chin. Phys. Lett., 2007, 24(4): 085101
[9] D. AKBAR, S. BILIKMEN. Ambipolar Diffusion in Direct-Current Positive Column with Variations in Radius of Discharge Tube[J]. Chin. Phys. Lett., 2006, 23(9): 085101
[10] MENG Xu-Jun, ZHU Xi-Rui, TIAN Ming-Feng, JIANG Min-Hao, WANG Zhi-Gang. Free or Quasi-Free Electronic Density of States in a Confined Atom[J]. Chin. Phys. Lett., 2005, 22(2): 085101
[11] ZHANG Yuan-Tao, WANG De-Zhen, WANG Yan-Hui, LIU Cheng-Sen. Radial Evolution of the Atmospheric Pressure Glow Discharge in Helium Controlled by Dielectric Barrier[J]. Chin. Phys. Lett., 2005, 22(1): 085101
[12] WANG Yan-Hui, WANG De-Zhen. Modes of Homogeneous Barrier Discharge at Atmospheric Pressure in Helium[J]. Chin. Phys. Lett., 2004, 21(11): 085101
[13] OU Qiong-Rong, MENG Yue-Dong, XU Xu, SHU Xing-Sheng, REN Zhao-Xing. Effect of Frequency on Emission of XeI* Excimer in a Pulsed Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2004, 21(7): 085101
[14] QIN Yuan-Dong, WANG Dan-Ling, WANG Shu-Feng, GONG Qi-Huang. Spectral and Temporal Properties of Femtosecond White-Light Continuum Generated in H2O[J]. Chin. Phys. Lett., 2001, 18(3): 085101
[15] HE Zheng-Hao, LI Jin. Effect of Background Ions on the Selection of the Discharge Path[J]. Chin. Phys. Lett., 2001, 18(2): 085101
Viewed
Full text


Abstract