Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 084501    DOI: 10.1088/0256-307X/35/8/084501
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Dynamics of a Rotating Sphere on Free Surface of Vibrated Granular Materials
Adones B. Dengal1,2, Joel T. Maquiling1**
1Geophysics Research Laboratory, Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon 1108, Philippines
2Department of Physics, College of Natural Sciences and Mathematics, Mindanao State University, Marawi 9700, Philippines
Cite this article:   
Adones B. Dengal, Joel T. Maquiling 2018 Chin. Phys. Lett. 35 084501
Download: PDF(3196KB)   PDF(mobile)(3193KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the rotational dynamics of a low-density sphere on the free surface of a vertically vibrated granular material (VGM). The dynamical behavior of the sphere is influenced by the external energy input from an electromagnetic shaker which is proportional to $\varepsilon$, where $\varepsilon$ is equal to the ratio between the square of the dimensionless acceleration ${\it \Gamma}$ and the square of the vibration frequency $f$ of the container. Empirical results reveal that as the VGM transits from local-to-global convection, an increase in $\varepsilon$ generally corresponds to an increase in the magnitudes of the rotational $\omega_{\rm RS}$ and translational $v_{\rm CM}$ velocities of the sphere, an increase in the observed tilting angle $\theta_{\rm bed}$ of the VGM bed, and a decrease in the time $t_{\rm wall}$ it takes the sphere to roll down the tilted VGM bed and hit the container wall. During unstable convection, an increase in $\varepsilon$ results in a sharp decrease in the sphere's peak and mean $\omega_{\rm RS}$, and a slight increase in $t_{\rm wall}$. For the range of $\varepsilon$ values covered in this study, the sphere may execute persistent rotation, wobbling or jamming, depending on the vibration parameters and the resulting convective flow in the system.
Received: 11 April 2018      Published: 15 July 2018
PACS:  45.70.-n (Granular systems)  
  45.70.Mg (Granular flow: mixing, segregation and stratification)  
  47.55.Lm (Fluidized beds)  
  45.50.-j (Dynamics and kinematics of a particle and a system of particles)  
Fund: Supported by the CHED-FDP II Program of the Commission on Higher Education of the Philippines.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/084501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/084501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Adones B. Dengal
Joel T. Maquiling
[1]Jaeger H, Nagel S and Behringer R 1996 Rev. Mod. Phys. 68 1259
[2]Kruelle C A 2009 Rev. Adv. Mater. Sci. 20 113
[3]Kakalios J 2005 Am. J. Phys. 73 8
[4]Jain A, Metzger M J and Glasser B J 2013 Powder Technol. 237 543
[5]Eshuis P, van der Weele K, van der Meer D et al 2007 Phys. Fluids 19 123301
[6]Zamankhan P 2013 Adv. Powder Technol. 24 1070
[7]Zhang F, Wang L, Liu C et al 2014 Phys. Lett. A 378 1303
[8]Hashemnia K and Pourandi S 2018 Powder Technol. 327 335
[9]Zhang K, Chen T and He L 2017 Powder Technol. 321 173
[10]Ansari I H, Rivas N and Alam M 2018 Phys. Rev. E 97 012911
[11]Zamankhan P 2012 Chem. Eng. J. 181 842
[12]Folli V, Ghofraniha N, Puglisi A et al 2013 Sci. Rep. 3 2251
[13]Jiang Z H, Liang Z J, Wu A C et al 2018 Physica A 494 380
[14]Liu C, Zhang F, Wang L et al 2013 Powder Technol. 247 14
[15]Xie Z A, Wu P, Su T et al 2015 Powder Technol. 283 266
[16]Shinbrot T 2004 Nature 429 352
[17]PachecoV ázquez F and Ruiz-Suárez J C 2010 Nat. Commun. 1 123
[18]van den Wildenberg S, Léopoldès J, Tourin A et al 2017 EPJ Web Conf. 140 03080
[19]Xie Z A, Wu P, Zhang S et al 2012 Phys. Rev. E 85 061302
[20]Fiscina J E, Cáceres M O and Mücklich F 2005 J. Phys.: Condens. Matter 17 S1237
Related articles from Frontiers Journals
[1] Can-can Zhou, Hongchuan Shen, Hua Tong, Ning Xu, and Peng Tan. Coupling between Particle Shape and Long-Range Interaction in the High-Density Regime[J]. Chin. Phys. Lett., 2020, 37(8): 084501
[2] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 084501
[3] Lina Yang, Yu-Qi Chen. Dynamical Study of Granular Flow through a Two-Dimensional Hopper[J]. Chin. Phys. Lett., 2019, 36(2): 084501
[4] DONG Yuan-Xiang, ZHANG Guo-Hua, SUN Qi-Cheng, ZHAO Xue-Dan, NIU Xiao-Na. Analysis of Low-Frequency Vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear[J]. Chin. Phys. Lett., 2015, 32(12): 084501
[5] CHEN Yan-Pei, Pierre Evesque, HOU Mei-Ying. Breakdown of Energy Equipartition in Vibro-Fluidized Granular Media in Micro-Gravity[J]. Chin. Phys. Lett., 2012, 29(7): 084501
[6] CHEN Qiong, YANG Xian-Qing**, WANG Zhen-Hui, ZHAO Xin-Yin. Two Kinds of Localized Oscillating Modes in Strongly Nonlinear Hertzian Chains with Defect[J]. Chin. Phys. Lett., 2012, 29(1): 084501
[7] Ram Chand, Abdul Qadir, SHI Qing-Fan**, ZHENG Ning, SUN Gang** . Anomalous Increase of Apparent Mass in a Silo due to Percolation[J]. Chin. Phys. Lett., 2011, 28(9): 084501
[8] SUN Qi-Cheng**, JI Shun-Ying . A Pair Correlation Function Characterizing the Anisotropy of Force Networks[J]. Chin. Phys. Lett., 2011, 28(6): 084501
[9] WEN Zhen-Ying, WANG Shun-Jin, ZHANG Xiu-Ming, LI Lei. Solitary Wave Interactions in Granular Media[J]. Chin. Phys. Lett., 2007, 24(10): 084501
[10] Rui Li, Jie Li, Wei Dai, Mu-Qing Chen. Effect of Thermal Convection on Density Segregation in Binary Granular Gases with Dissipative Lateral Walls[J]. Chin. Phys. Lett., 2017, 34(11): 084501
Viewed
Full text


Abstract