Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 084202    DOI: 10.1088/0256-307X/35/8/084202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Simultaneous Measurement of Fringe Visibility and Path Predictability of Wave-Particle Duality
Jie-Hui Huang1,2**, Tao Peng1, Luo-Jia Wang1, Shi-Yao Zhu1,3
1Texas A&M University, College Station, Texas 77843, USA
2College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022
3Department of Physics, Zhejiang University, Hangzhou 310027
Cite this article:   
Jie-Hui Huang, Tao Peng, Luo-Jia Wang et al  2018 Chin. Phys. Lett. 35 084202
Download: PDF(496KB)   PDF(mobile)(492KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An experimental scheme to simultaneously obtain the information of fringe visibility and path predictability is designed. In a modified Young's double-slit experiment, two density filters rotating at different frequencies are placed before the two pineholes to encode path information. The spatial and temporal distributions of the output provide us with the wave and particle information of the single photons, respectively. The simultaneous measurement of the wave and particle information inevitably disturbs the system and thus causes some loss of the duality information, which is equal to the mixedness of the photonic state behind the density filters.
Received: 23 May 2018      Published: 15 July 2018
PACS:  42.25.Hz (Interference)  
  42.30.Lr (Modulation and optical transfer functions)  
  42.30.Va (Image forming and processing)  
Fund: Supported by the National Science Foundation (INSPIRE CREATIV) under Grant No PHY-1241032, the Robert A. Welch Foundation under Grant No A-1261, and the National Natural Science Foundation of China under Grant No 11664018.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/084202       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/084202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie-Hui Huang
Tao Peng
Luo-Jia Wang
Shi-Yao Zhu
[1]Feynman R P et al 1965 Feynman Lectures Phys. (MA: Addison Wesley) vol III chap 2
[2]Scully M O and Drühl K 1982 Phys. Rev. A 25 2208
[3]Scully M O et al 1991 Nature 351 111
[4]Kim Y H et al 2000 Phys. Rev. Lett. 84 1
[5]Ionicioiu R and Terno D R 2011 Phys. Rev. Lett. 107 230406
[6]Tang J S et al 2012 Nat. Photon. 6 600
[7]Peruzzo A et al 2012 Science 338 634
[8]Zheng S B et al 2015 Phys. Rev. Lett. 115 260403
[9]Yan H et al 2015 Phys. Rev. A 91 042132
[10]Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[11]Glauber R 1986 Ann. N. Y. Acad. Sci. 480 336
[12]Greenberger D M and Yasin A 1988 Phys. Lett. A 128 391
[13]Mandel L 1991 Opt. Lett. 16 1882
[14]Jaeger G et al 1995 Phys. Rev. A 51 54
[15]Englert B G 1996 Phys. Rev. Lett. 77 2154
[16]Wickles C and Müller C 2006 Europhys. Lett. 74 240
[17]Chapman M S et al 1995 Phys. Rev. Lett. 75 3783
[18]Bertet P et al 2001 Nature 411 166
[19]Buks E et al 1998 Nature 391 871
[20]Wang Z H et al 2016 Phys. Rev. A 94 062124
[21]Li G et al 2017 Opt. Lett. 42 3800
[22]Kolár̆ M et al 2008 Opt. Lett. 33 67
[23]Schwindt P D D et al 1999 Phys. Rev. A 60 4285
[24]Liu H Y et al 2012 Phys. Rev. A 85 022106
[25]Han Y et al 2009 Chin. Phys. Lett. 26 040303
[26]Wheeler J A 1984 Quantum Theory and Measurement (Princeton: Princeton University)
[27]Jacques V et al 2008 Phys. Rev. Lett. 100 220402
[28]Kaiser F et al 2012 Science 338 637
[29]Li Z Y 2016 Chin. Phys. Lett. 33 080302
[30]Chen L X et al 2014 Opt. Lett. 39 5897
[31]Born M and Wolf E 1999 Principles of Optics (Cambridge: Cambridge University)
[32]Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University)
[33]Busch P 2009 Quantum Reality Relativistic Causality Closing Epistemic Circle (Dordrecht: Springer) p 229
[34]Peters N A et al 2004 Phys. Rev. A 70 052309
[35]Huang J H et al 2013 Phys. Rev. A 87 022107
[36]Huang J H et al 2013 Phys. Rev. A 88 013828
[37]Menzel R et al 2012 Proc. Natl. Acad. Sci. USA 109 9314
[38]Bolduc E et al 2014 Proc. Natl. Acad. Sci. USA 111 12337
Related articles from Frontiers Journals
[1] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 084202
[2] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 084202
[3] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 084202
[4] Hai-Sha Niu, Lian-Qing Zhu, Jian-Jun Song. Laser Intensity Variation in Amplitude and Phase Induced by Elliptically Polarized Feedback[J]. Chin. Phys. Lett., 2018, 35(5): 084202
[5] Gen Yue, Yu Lei, Jun-Hui Die, Hai-Qiang Jia, Hong Chen. Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography[J]. Chin. Phys. Lett., 2018, 35(5): 084202
[6] Xian-Ping Luo, Fei-Ru Wang, Chun-Lei Chen, Ling-Li Zhang, Lei Wang, Wei-Min Sun, Yong-Jun Liu. A Novel Mach–Zehnder Interferometer Based on Hybrid Liquid Crystal–Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2017, 34(12): 084202
[7] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 084202
[8] Jun Dong, Zhong-Gui Lu, Bo Zhang, Zhi-Tao Peng, Zhi-Hong Sun, Yan-Wen Xia, Hao-Yu Yuan, Jun Tang, De-Yan Zhu, Hua Liu, Jia-Kun Lv. Single-Shot Measurement of Transient Phase Shift Induced by Laser Wake[J]. Chin. Phys. Lett., 2017, 34(5): 084202
[9] Yu Si, Ling-Jun Kong, Yu Zhang, Zhi-Cheng Ren, Yue Pan, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Spatial-Variant Geometric Phase of Hybrid-Polarized Vector Optical Fields[J]. Chin. Phys. Lett., 2017, 34(4): 084202
[10] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 084202
[11] Fu Sun, Dong Wei, Gui-Zhong Zhang, Xin Ding, Jian-Quan Yao. Dynamic Interference Photoelectron Spectra in Double Ionization: Numerical Simulation of 1D Helium[J]. Chin. Phys. Lett., 2016, 33(12): 084202
[12] MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, LIU Wan-Fang, ZHANG Jie. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method[J]. Chin. Phys. Lett., 2015, 32(09): 084202
[13] LI Fu, Hashmi F. A., ZHANG Jun-Xiang, ZHU Shi-Yao. An Ideal Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2015, 32(5): 084202
[14] WEN Feng, ZHANG Xun, YUAN Chen-Zhi, LI Chang-Biao, WANG Jing-Da, ZHANG Yan-Peng. Visibility and Resolution Enhancement of Fourth-Order Ghost Interference with Thermal Light[J]. Chin. Phys. Lett., 2015, 32(01): 084202
[15] XU Yuan, HUANG Yuan-Yuan, HU Ling, ZHANG Pei, WEI Dong, LI Hong-Rong, GAO Hong, LI Fu-Li. Measurement of Berry Phase Associated with Higher Dimensional Orbital Angular Momentum of Light by Interference Method[J]. Chin. Phys. Lett., 2013, 30(10): 084202
Viewed
Full text


Abstract