Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 080601    DOI: 10.1088/0256-307X/35/8/080601
GENERAL |
Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme
Chao-qun Ma1,2**, Li-Fei Wu3, Jiao Gu1,2, Yan-He Chen1,2, Guo-Qing Chen1,2**
1School of Science, Jiangnan University, Wuxi 214122
2Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Jiangnan University, Wuxi 214122
3State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062
Cite this article:   
Chao-qun Ma, Li-Fei Wu, Jiao Gu et al  2018 Chin. Phys. Lett. 35 080601
Download: PDF(610KB)   PDF(mobile)(599KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a triple-pass scheme for coherent transfer of optical frequency and the delay effect on the fiber phase noise compensation. It is theoretically proved that the delay effect consists of both fiber delay and servo delay. The delay effect confines the servo bandwidth within $1/8\tau$ and induces a residual fiber phase noise after noise compensation. For a 25-km-long fiber, the servo bandwidth is found to be around 1 kHz, and the fiber phase noise is suppressed approaching to the theoretical limitation. The triple-pass scheme enables the simultaneous transfer of optical frequency to multiple remote users. The performance of noise compensator in the triple-pass scheme can achieve a similar level result compared with that in the double-pass scheme.
Received: 16 April 2018      Published: 15 July 2018
PACS:  06.30.Ft (Time and frequency)  
  42.81.Uv (Fiber networks)  
  07.07.Tw (Servo and control equipment; robots)  
  07.60.Vg (Fiber-optic instruments)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61378037, and the Fundamental Research Funds for the Central Universities under Grant No JUSRP51628B.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/080601       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/080601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao-qun Ma
Li-Fei Wu
Jiao Gu
Yan-He Chen
Guo-Qing Chen
[1]Ludlow A D, Zelevinsky T, Campbell G K et al 2008 Science 319 1805
[2]Leopardi H, Davila-Rodriguez J, Quinlan F et al 2017 Optica 4 879
[3]Chou C W, Hume D B, Rosenb T et al 2010 Science 329 1630
[4]Schiller S, Tino G M, Gill P et al 2009 Exp. Astron. 23 573
[5]Calhoun M, Huang S and Tjoelker R L 2007 Proc. IEEE 95 1931
[6]Foreman S M, Holman K W, Hudson D D et al 2007 Rev. Sci. Instrum. 78 021101
[7]Ma L S, Jungner P, Ye J et al 1994 Opt. Lett. 19 1777
[8]Ye J, Peng J L, Jones R J et al 2003 J. Opt. Soc. Am. B 20 1459
[9]Foreman S M, Ludlow A D, de Miranda M H G et al 2007 Phys. Rev. Lett. 99 153601
[10]Newbury N R, Williams P A and Swann W C 2007 Opt. Lett. 32 3056
[11]Coddington I, Swann W C, Lorini L et al 2007 Nat. Photon. 1 283
[12]Williams P A, Swann W C and Newbury N R 2008 J. Opt. Soc. Am. B 25 1284
[13]Jiang H, Kéfélian F, Crane S et al 2008 J. Opt. Soc. Am. B 25 2029
[14]Grosche G, Terra O, Predehl K et al 2009 Opt. Lett. 34 2270
[15]Lopez O, Haboucha A, Kefelian F et al 2010 Opt. Express 18 16849
[16]Terra O, Grosche G and Schnatz H 2010 Opt. Express 18 16102
[17]Predehl K, Grosche G, Raupach S M F et al 2012 Science 336 441
[18]Lopez O, Haboucha A, Chanteau B et al 2012 Opt. Express 20 23518
[19]Gozzard D R, Schediwy S W, Wallace B et al 2017 Opt. Lett. 42 2197
[20]Musha M, Hong F, Nakagawa K et al 2008 Opt. Express 16 16459
[21]Ma C Q, Wu L F, Jiang Y Y et al 2015 Appl. Phys. Lett. 107 261109
[22]Deng X, Liu J, Jiao D D et al 2016 Chin. Phys. Lett. 33 114202
[23]Droste S, Ozimek F, Udem T et al 2013 Phys. Rev. Lett. 111 110801
[24]Raupach S M F, Koczwara A and Grosche G 2015 Phys. Rev. A 92 021801(R)
[25]Calonico D, Bertacco E K, Calosso C E et al 2014 Appl. Phys. B 117 979
[26]Schediwy S W, Gozzard D, Baldwin K G et al 2013 Opt. Lett. 38 2893
[27]Grosche G 2014 Opt. Lett. 39 2545
[28]Bercy A, Guellatikhelifa S, Stefani F et al 2014 J. Opt. Soc. Am. B 31 678
[29]Bercy A, Lopez O, Pottie P E et al 2016 Appl. Phys. B 122 189
[30]Wu L F, Jiang Y Y, Ma C Q et al 2016 Opt. Lett. 41 4368
[31]Gardner F M 2005 Phaselock Techniques: Third Edition (New Jersey: John Wiley & Sons Inc.)
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 080601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 080601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 080601
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 080601
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 080601
[6] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 080601
[7] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 080601
[8] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 080601
[9] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 080601
[10] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 080601
[11] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 080601
[12] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 080601
[13] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 080601
[14] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 080601
[15] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 080601
Viewed
Full text


Abstract