Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 079701    DOI: 10.1088/0256-307X/35/7/079701
Effect of Tidal Torques on Rotational Mixing in Close Binaries
Zhi Li1, Han-Feng Song1,2,3**, Wei-Guo Peng1
1College of Physics, Guizhou University, Guiyang 550025
2Geneva Observatory, University of Geneva, Sauverny CH-1290, Switzerland
3Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011
Cite this article:   
Zhi Li, Han-Feng Song, Wei-Guo Peng 2018 Chin. Phys. Lett. 35 079701
Download: PDF(620KB)   PDF(mobile)(622KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of tidal torques on rotational mixing in close binaries is investigated. It is found that spin angular momentum can attain a high value due to a strong tidal torque. Nitrogen and helium enrichment occurs early in the binary system that is triggered by tides. The stellar radius can reach a high value in the single star model with high initial velocities at the early stage of the evolution, but efficient rotational mixing can inhibit stellar expanding at the subsequent evolution. Central compactness is increased by the centrifugal force at the early stage of evolution but is reduced by rotational mixing induced by strong tides. The binary models with weak tides have high values of central temperature and stellar radius. Rotational mixing in single stars can slow down the shrinkage of convective cores, while convective cores can be expanded by strong tides in the binary system. Efficient rotational mixing induced by tides can cause the star to evolve towards high temperature and luminosity.
Received: 30 March 2018      Published: 24 June 2018
PACS:  97.10.Cv (Stellar structure, interiors, evolution, nucleosynthesis, ages)  
  97.10.Kc (Stellar rotation)  
  97.20.Ec (Main-sequence: early-type stars (O and B))  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11463002, and the Open Foundation of key Laboratory for the Structure and evolution of Celestial Objects of Chinese Academy of Sciences under Grant No OP201405.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Zhi Li
Han-Feng Song
Wei-Guo Peng
[1]Maeder A and Meynet G 2012 Rev. Mod. Phys. 84 25
[2]Langer N 2012 Annu. Rev. Astron. Astrophys. 50 107
[3]Song H F, Wang J Z, Song F and Wang J T 2017 Astron. Astrophys. 600 A42
[4]Song H F, Meynet G, Maeder A, Ekstrom S, Eggenberger P, Georgy C, Qin Y, Fragos T, Soerensen M, Barblan F and Wade G A 2018 Astron. Astrophys. 609 A3
[5]Zhan Q, Song H F, Tai L T and Wang J T 2015 Acta Phys. Sin. 64 089701 (in Chinese)
[6]von Zeipel H 1924 Mon. Not. R. Astron. Soc. 84 665
[7]Tai L T, Song H F and Wang J T 2016 Acta Phys. Sin. 65 049701 (in Chinese)
[8]Wang J T and Song H F 2016 Chin. Phys. Lett. 33 099702
[9]Meynet G, Hirschi R, Ekstrom S, Maeder A, Georgy C, Eggenberger P and Chiappini C 2010 Astron. Astrophys. 521 A30
[10]Mathis S and Zahn J P 2004 Astron. Astrophys. 425 229
[11]Zahn J P 1992 Astron. Astrophys. 265 115
[12]Maeder A and Meynet G 2000 Astron. Astrophys. 361 159
[13]Zahn J P 1977 Astron. Astrophys. 57 383
[14]Zahn J P 1989 Astron. Astrophys. 220 112
[15]Zahn J P 1975 Astron. Astrophys. 41 329
[16]Toledano O, Moreno E, Koenigsberger G, Detmers R and Langer N 2007 Astron. Astrophys. 461 1057
[17]Detmers R G, Langer N, Podsiadlowski Ph and Izzard R G 2008 Astron. Astrophys. 484 831
[18]Witte M G and Savonije G J 1999 Astron. Astrophys. 350 129
[19]de Jager C, Nieuwenhuijden H and van der Hucht K A 1988 Bull. Inform. CDS 35 141
[20]Maeder A, Meynet G, Lagarde N and Charbonnel C 2013 Astron. Astrophys. 553 A1
[21]Song H F, Wang J Z and Tai L T 2013 Acta Phys. Sin. 62 059701 (in Chinese)
[22]Maeder A 1997 Astron. Astrophys. 321 134
[23]Maeder A and Zahn J P 1998 Astron. Astrophys. 334 1000
[24]Chaboyer B and Zahn J P 1992 Astron. Astrophys. 253 173
[25]Maeder A 1999 Astron. Astrophys. 347 185
[26]Claret A 1999 Astron. Astrophys. 350 56
Related articles from Frontiers Journals
[1] Jiang Zhang, Ren-Yi Ma, Hong-Jie Li, Bo Zhang. Nucleosynthesis in Advection-Dominated Accretion Flow onto a Black Hole[J]. Chin. Phys. Lett., 2017, 34(4): 079701
[2] Jiang-Tao Wang, Han-Feng Song. The Pulsation Induced by Mass Transfer in Critically Rotating Stars[J]. Chin. Phys. Lett., 2016, 33(09): 079701
[3] ZHANG Jiang, **, WANG Bo, ZHANG Bo, HAN Zhan-Wen,. Reanalysis of the Isotopic Mixture of Neutron-Capture Elements in the Metal-Poor Star HD 175305[J]. Chin. Phys. Lett., 2012, 29(1): 079701
[4] CUI Dong-Nuan, GENG Yuan-Yuan, CUI Wen-Yuan, ZHANG Bo. Mass Fraction of 13C-Pocket in Metal-Poor AGB Stars and the Primary Nature of Neutron Source[J]. Chin. Phys. Lett., 2009, 26(3): 079701
[5] CUI Wen-Yuan, , CUI Dong-Nuan, DU Yun-Shuang, ZHANG Bo,. Neutron-Capture Elements in the Double-Enhanced Star HE 1305-0007: a New s- and r-Process Paradigm[J]. Chin. Phys. Lett., 2007, 24(5): 079701
[6] ZHANG Feng-Hui, HAN Zhan-Wen, LI Li-Fang. Effect of the Initial Mass Function of Primaries on Binary Stellar Populations[J]. Chin. Phys. Lett., 2005, 22(4): 079701
[7] SONG Han-Feng, ZHANG Bo, ZHANG Jiang, WU Hai-Bin, PENG Qiu-He. R-Process Nucleosynthesis and Galactic Chemical Evolution of the Ba Peak Elements[J]. Chin. Phys. Lett., 2003, 20(11): 079701
[8] WANG Fei-Lu, ZHAO Gang, YUAN Jian-Min,. Density Dependence of the Detailed Spectral Line Effects on the Opacity of Astrophysical Abundant Elements: Oxygen[J]. Chin. Phys. Lett., 2003, 20(10): 079701
[9] ZHANG Miao-Jing, , ZHANG Bo, , LI Guang-Lie,. Abundance Distribution of Slow-Process Main Heavy Elements in AGB Stars[J]. Chin. Phys. Lett., 2003, 20(6): 079701
[10] ZHANG Feng-Hui, HAN Zhan-Wen, LI Li-Fang, Jarrod R. Hurley. Evolutionary Population Synthesis for Single Stellar Populations[J]. Chin. Phys. Lett., 2002, 19(11): 079701
[11] PENG Qiuhe. Are Massive Main Sequence Stars and Wolf-Rayet Stars Detectable Sources of the Intersteller Medium 26A1? [J]. Chin. Phys. Lett., 1994, 11(8): 079701
Full text