Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 078502    DOI: 10.1088/0256-307X/35/7/078502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Total Ionizing Dose Effects of 55-nm Silicon-Oxide-Nitride-Oxide-Silicon Charge Trapping Memory in Pulse and DC Modes
Mei Li1,2, Jin-Shun Bi1,2**, Yan-Nan Xu1,2, Bo Li1, Kai Xi1, Hai-Bin Wang3, Jing-Liu1, Jin-Li1, Lan-Long Ji1, Li Luo4, Ming Liu1
1Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
2University of Chinese Academy of Sciences, Beijing 100049
3School of Internet of Things Engineering, HoHai University, Changzhou 213022
4Beijing Jiaotong University, Beijing 100044
Cite this article:   
Mei Li, Jin-Shun Bi, Yan-Nan Xu et al  2018 Chin. Phys. Lett. 35 078502
Download: PDF(682KB)   PDF(mobile)(678KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The $^{60}$Co-$\gamma$ ray total ionizing dose radiation responses of 55-nm silicon-oxide-nitride-oxide-silicon (SONOS) memory cells in pulse mode (programmed/erased with pulse voltage) and dc mode (programmed/erased with direct voltage sweeping) are investigated. The threshold voltage and off-state current of memory cells before and after radiation are measured. The experimental results show that the memory cells in pulse mode have a better radiation-hard capability. The normalized memory window still remains at 60% for cells in dc mode and 76% for cells in pulse mode after 300 krad(Si) radiation. The charge loss process physical mechanisms of programmed SONOS devices during radiation are analyzed.
Received: 02 April 2018      Published: 24 June 2018
PACS:  85.30.-z (Semiconductor devices)  
  07.89.+b (Environmental effects on instruments (e.g., radiation and pollution effects))  
  61.80.Ed (γ-ray effects)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 616340084, the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2014101, and the Austrian-Chinese Cooperative R&D Projects of International Cooperation Project of Chinese Academy of Sciences under Grant No 172511KYSB20150006.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/078502       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/078502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mei Li
Jin-Shun Bi
Yan-Nan Xu
Bo Li
Kai Xi
Hai-Bin Wang
Jing-Liu
Jin-Li
Lan-Long Ji
Li Luo
Ming Liu
[1]White M H, Adam D A and Bu J K 2000 IEEE Circuits Devices Mag. 16 22
[2]Qiao F Y, Pan L Y, Pirter B et al 2014 IEEE Trans. Nucl. Sci. 61 955
[3]Lv S C, Ge Z Y, Zhou Y et al 2010 Chin. Phys. Lett. 27 068502
[4]Bi J S, Xu Y N, Xu G B et al 2018 IEEE Trans. Nucl. Sci. 65 200
[5]Liao Z W, Huang Y, Zhang M et al 2008 Chin. Phys. Lett. 25 1908
[6]Puchner H, Ruths P, Prabhakar V et al 2014 IEEE Trans. Nucl. Sci. 61 3005
[7]Bassi S and Pattanaik M 2014 Int. Symp. VLSI Design. Test (Coimbatore 16–18 July 2014) p 1
[8]Qiao F Y, Yu X, Pan L Y et al 2012 Int. Symp. Phys. Failure Anal. Integr. Circuits (Singapore 2–6 July 2012) p 1
[9]Aritome S, Shirota R, Hemink G et al 1993 Proc. IEEE 81 776
[10]Hu S G, Cao Y R, Hao Y et al 2008 Chin. Phys. Lett. 25 4109
[11]Cao Y R, Hao Y, Ma X H et al 2008 Chin. Phys. Lett. 25 1427
[12]Chou A I, Lai K, Kumar K et al 1997 Appl. Phys. Lett. 70 3407
[13]Jazaeri F, Zhang C M, Pezzotta A et al 2017 IEEE J. Electron Devices Soc. 6 85
[14]Liu Y, Liu K, Chen R S et al 2017 Chin. Phys. Lett. 34 018501
[15]Park S, Lee J, Ryu Y et al 2010 IEEE Int'l Conf. Electron. Cir. Sys. (Athens 12-15 Dec 2010) p 289
[16]Liang M S, Haddad S, Cox W et al 1986 IEEE Int. Electron Devices Meet. 32 394
[17]Rebuffat B, Masson P, Ogier J L et al 2014 Int. Symp. Integr. Circuits (Singapore 10–12 Dec 2014) p 416
[18]White M H, Yang Y, Purwar A et al 1997 IEEE Trans. Compon. Packag. Manuf. Technol. 20 190
[19]Rosenbaum E and Hu C M 1991 IEEE Electron Device Lett. 12 267
[20]Oldham T R and McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483
[21]McWhorter P J, Miller S L and Dellin T A 1986 IEEE Trans. Nucl. Sci. 33 1413
[22]Lee M C and Wong H Y 2014 J. Nanotechnol. 14 1508
[23]Chien H C, Kao C H, Chang J W et al 2005 Microelectron. Eng. 80 256
Related articles from Frontiers Journals
[1] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 078502
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 078502
[3] Liang-Sen Feng, Zhe Liu, Ning Zhang, Bin Xue, Jun-Xi Wang, Jin-Min Li. Effect of Nanorod Diameters on Optical Properties of GaN-Based Dual-Color Nanorod Arrays[J]. Chin. Phys. Lett., 2019, 36(2): 078502
[4] Yan-Nan Xu, Jin-Shun Bi, Gao-Bo Xu, Bo Li, Kai Xi, Ming Liu, Hai-Bin Wang, Li Luo. Total Ionization Dose Effects on Charge Storage Capability of Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$-Based Charge Trapping Memory Cell[J]. Chin. Phys. Lett., 2018, 35(11): 078502
[5] Yan-Fei Liu, Dong-Dong Yang, Li-Xin Wang, Qi Li. Directional Analysis of the Chaotic Superlattice around the Equilibrium Point in the Phase Space[J]. Chin. Phys. Lett., 2018, 35(4): 078502
[6] Meng-Ying Zhang, Zhi-Yuan Hu, Zheng-Xuan Zhang, Shuang Fan, Li-Hua Dai, Xiao-Nian Liu, Lei Song. Total Ionizing Dose Response of Different Length Devices in 0.13μm Partially Depleted Silicon-on-Insulator Technology[J]. Chin. Phys. Lett., 2017, 34(8): 078502
[7] Yi-Ze Wang, Chang Liu, Jian-Hui Cai, Qiang Liu, Xin-Ke Liu, Wen-Jie Yu, Qing-Tai Zhao. Experimental $I$–$V$ and $C$–$V$ Analysis of Schottky-Barrier Metal-Oxide-Semiconductor Field Effect Transistors with Epitaxial NiSi$_{2}$ Contacts and Dopant Segregation[J]. Chin. Phys. Lett., 2017, 34(7): 078502
[8] Xin Tan, Xing-Ye Zhou, Hong-Yu Guo, Guo-Dong Gu, Yuan-Gang Wang, Xu-Bo Song, Jia-Yun Yin, Yuan-Jie Lv, Zhi-Hong Feng. Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al$_{2}$O$_{3}$ Gate Dielectric[J]. Chin. Phys. Lett., 2016, 33(09): 078502
[9] Xiao-Peng Lv, Hui Wang, Ling-Qiang Meng, Xiao-Fang Wei, Yong-Zhen Chen, Xiang-Bin Kong, Jian-Jun Liu, Jian-Xin Tang, Peng-Fei Wang, Ying Wang. High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter[J]. Chin. Phys. Lett., 2016, 33(08): 078502
[10] Quan-Xi Yan, Shu-Fang Zhang, Xing-Ming Long, Hai-Jun Luo, Fang Wu, Liang Fang, Da-Peng Wei, Mei-Yong Liao. Numerical Simulation on Thermal-Electrical Characteristics and Electrode Patterns of GaN LEDs with Graphene/NiO$_x$ Hybrid Electrode[J]. Chin. Phys. Lett., 2016, 33(07): 078502
[11] Jin-Feng Feng, Chang Liu, Wen-Jie Yu, Ying-Hong Peng. Oxygen Scavenging Effect of LaLuO$_{3}$/TiN Gate Stack in High-Mobility Si/SiGe/SOI Quantum-Well Transistors[J]. Chin. Phys. Lett., 2016, 33(05): 078502
[12] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 078502
[13] HU Sheng-Dong, JIN Jing-Jing, CHEN Yin-Hui, JIANG Yu-Yu, CHENG Kun, ZHOU Jian-Lin, LIU Jiang-Tao, HUANG Rui, YAO Sheng-Jie. A Novel Interface-Gate Structure for SOI Power MOSFET to Reduce Specific On-Resistance[J]. Chin. Phys. Lett., 2015, 32(09): 078502
[14] LIU Li-Fang, PAN Li-Yang, ZHANG Zhi-Gang, XU Jun. Impact of Band-Engineering to Performance of High-k Multilayer Based Charge Trapping Memory[J]. Chin. Phys. Lett., 2015, 32(08): 078502
[15] ZHANG Chun-Wei, LIU Si-Yang, SUN Wei-Feng, ZHOU Lei-Lei, ZHANG Yi, SU Wei, ZHANG Ai-Jun, LIU Yu-Wei, HU Jiu-Li, HE Xiao-Wei. Anomalous Channel Length Dependence of Hot-Carrier-Induced Saturation Drain Current Degradation in n-Type MOSFETs[J]. Chin. Phys. Lett., 2015, 32(08): 078502
Viewed
Full text


Abstract