Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 074101    DOI: 10.1088/0256-307X/35/7/074101
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Influence of Breaking Waves and Wake Bubbles on Surface-Ship Wake Scattering at Low Grazing Angles
Xiao-Xiao Zhang1, Zhen-Sen Wu1**, Xiang Su2
1School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071
2China Academy of Space Technology (Xi'an), Xi'an 710100
Cite this article:   
Xiao-Xiao Zhang, Zhen-Sen Wu, Xiang Su 2018 Chin. Phys. Lett. 35 074101
Download: PDF(7270KB)   PDF(mobile)(7268KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A surface-ship wake model is proposed for calculating the scattering of ship wake from a nonlinear sea surface at a high sea state. Ship waves are simulated based on the Kelvin wave model by the point-source method. A Creamer II sea surface based on the Elfouhaily sea spectrum is generated, and breaking waves and foam layer effects are taken into account for the background sea scattering at slight, moderate and high wind speeds. Turbulent bubbles scattering from the ship, which is different from wind-driven bubble breaking, is taken into account with a different concentration distribution using a polynomial fitting function combined with measured data. The surface-ship wake scattering is presented for different wind speeds. Numerical simulations show that ship wake scattering results will be higher when wake bubbles are taken into account. The ship beam is a key parameter that influences the width of the turbulent wake, and results in different scattering characteristics on the scattering image. The wind-induced surface in the presence of breaking waves and whitecaps results in scattering enhancement. This will cause the ship wake signal to be submerged in the back-ground of sea noise, leading to false alarms.
Received: 08 April 2018      Published: 24 June 2018
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
  91.50.Iv (Marine magnetics and electromagnetics)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61571355.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/074101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/074101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Xiao Zhang
Zhen-Sen Wu
Xiang Su
[1]Fujimura A, Soloviev A, Rhee S H and Romeiser R 2016 IEEE Trans. Geosci. Remote Sens. 54 2543
[2]Wei Y Y, Wu Z S and Lu Y 2016 Chin. J. Rad. Sci. 31 438 (in Chinese)
[3]Liang S Y, Wang J A and Zhang F 2013 Acta Phys. Sin. 62 015205 (in Chinese)
[4]Oumansour K, Wang Y and Saillard J 1996 IEE Proc.-Radar Sonar Navig 143 275
[5]Zhang Y D and Wu Z S 2002 Chin. Phys. Lett. 19 666
[6]Li W L, Guo L X, Meng X and Liu W 2014 Acta Phys. Sin. 63 164102 (in Chinese)
[7]Li J X, Zhang M and Wei P B 2017 Chin. Phys. Lett. 34 094101
[8]Hong J L, Wei E B, Ge Y and Liu Y 2006 Chin. Phys. 15 2175
[9]Tunaley J K E, Buller E H, Wu K H and Rey M T 1991 IEEE Trans. Geosci. Remote Sens. 29 149
[10]Melville W K and Matusov P 2002 Nature 417 58
[11]Reul N and Chapron B 2003 J. Geophys. Res.: Oceans 108 58
[12]Zhang X D, Lewis M, Bissett W P, Johnson B and Kohler D 2004 Appl. Opt. 43 3122
[13]Zilman G, Zapolski A and Marom M 2004 IEEE Trans. Geosci. Remote Sens. 42 2335
[14]Zhang X X, Wu Z S and Su X 2018 IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11 355
[15]Wei Y W, Guo L X and Li J 2015 IEEE Trans. Antennas Propag. 63 4983
[16]Zhang X X, Wu Z S and Su X 2016 Acta Phys. Sin. 65 214101 (in Chinese)
[17]Fan T Q, Guo L X, Jin J and Meng X 2014 Acta Phys. Sin. 63 214104 (in Chinese)
[18]Daley J, Ransone J T and Burkett J J Radar sea return-JOSS II, Technical Report NRL Report 7534 Naval Research Laboratory, Wave Propagation Branch, Radar Division
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 074101
[2] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 074101
[3] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 074101
[4] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 074101
[5] Guo-Guo Wei, Chong Miao, Hao-Chong Huang, Hua Gao. Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with Dirac Cones[J]. Chin. Phys. Lett., 2019, 36(3): 074101
[6] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 074101
[7] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 074101
[8] Jin-Xing Li, Min Zhang, Peng-Bo Wei. Effects of Breaking Waves on Composite Backscattering from Ship-Ocean Scene[J]. Chin. Phys. Lett., 2017, 34(9): 074101
[9] Mohammad Hosein Fakheri, Hooman Barati, Ali Abdolali. Carpet Cloak Design for Rough Surfaces[J]. Chin. Phys. Lett., 2017, 34(8): 074101
[10] Xiao-Jing Zhang, Xi Wu, Ya-Dong Xu. Controlling of the Polarization States of Electromagnetic Waves Using Epsilon-near-Zero Metamaterials[J]. Chin. Phys. Lett., 2017, 34(8): 074101
[11] D. Basandrai, R. K. Bedi, A. Dhami, J. Sharma, S. B. Narang, K. Pubby, A. K. Srivastava. Radiation Losses in the Microwave X Band in Al-Cr Substituted Y-Type Hexaferrites[J]. Chin. Phys. Lett., 2017, 34(4): 074101
[12] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 074101
[13] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Yu Huang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. An Open Rectangular Waveguide Grating for Millimeter-Wave Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(09): 074101
[14] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. Design of a Novel Folded Waveguide for 60-GHz Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(04): 074101
[15] HUANG Lei, FAN Yun-Hui, WU Shan, YU Li-Zhi. Giant Asymmetric Transmission and Optical Rotation of a Three-Dimensional Metamaterial[J]. Chin. Phys. Lett., 2015, 32(09): 074101
Viewed
Full text


Abstract