Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 057402    DOI: 10.1088/0256-307X/35/5/057402
Electronic Phase Separation in Iron Selenide (Li,Fe)OHFeSe Superconductor System
Yiyuan Mao1,2,3†, Jun Li4†, Yulong Huan1,2,3†, Jie Yuan1,3, Zi-an Li1,3, Ke Chai5, Mingwei Ma1,3, Shunli Ni1,2, Jinpeng Tian1,2, Shaobo Liu1,2, Huaxue Zhou1, Fang Zhou1,2, Jianqi Li1,2,3, Guangming Zhang6, Kui Jin1,2,3, Xiaoli Dong1,2,3**, Zhongxian Zhao1,2,3**
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Key Laboratory for Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049
4Research Institute of Superconductor Electronic, Nanjing University, Nanjing 210093
5School of Physics, Beijing Institute of Technology, Beijing 100081
6State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
Yiyuan Mao, Jun Li, Yulong Huan et al  2018 Chin. Phys. Lett. 35 057402
Download: PDF(827KB)   PDF(mobile)(816KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The phenomenon of phase separation into antiferromagnetic (AFM) and superconducting (SC) or normal-state regions has great implication for the origin of high-temperature (high-$T_{\rm c}$) superconductivity. However, the occurrence of an intrinsic antiferromagnetism above the $T_{\rm c}$ of (Li,Fe)OHFeSe superconductor is questioned. Here we report a systematic study on a series of (Li,Fe)OHFeSe single crystal samples with $T_{\rm c}$ up to $\sim$41 K. We observe an evident drop in the static magnetization at $T_{\rm afm} \sim 125$ K, in some of the SC ($T_{\rm c} \lesssim 38$ K, cell parameter $c \lesssim 9.27$ Å) and non-SC samples. We verify that this AFM signal is intrinsic to (Li,Fe)OHFeSe. Thus, our observations indicate mesoscopic-to-macroscopic coexistence of an AFM state with the normal (below $T_{\rm afm}$) or SC (below $T_{\rm c}$) state in (Li,Fe)OHFeSe. We explain such coexistence by electronic phase separation, similar to that in high-$T_{\rm c}$ cuprates and iron arsenides. However, such an AFM signal can be absent in some other samples of (Li,Fe)OHFeSe, particularly it is never observed in the SC samples of $T_{\rm c} \gtrsim 38$ K, owing to a spatial scale of the phase separation too small for the macroscopic magnetic probe. For this case, we propose a microscopic electronic phase separation. The occurrence of two-dimensional AFM spin fluctuations below nearly the same temperature as $T_{\rm afm}$, reported previously for a (Li,Fe)OHFeSe ($T_{\rm c} \sim 42$ K) single crystal, suggests that the microscopic static phase separation reaches vanishing point in high-$T_{\rm c}$ (Li,Fe)OHFeSe. A complete phase diagram is thus established. Our study provides key information of the underlying physics for high-$T_{\rm c}$ superconductivity.
Received: 04 April 2017      Published: 30 April 2018
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.Dw (Superconductivity phase diagrams)  
  74.81.-g (Inhomogeneous superconductors and superconducting systems, including electronic inhomogeneities)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2017YFA0303003, 2016YFA0300300 and 2015CB921000, the National Natural Science Foundation of China under Grant Nos 11574370, 11474338, 11674374 and 61501220, the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant Nos QYZDY-SSW-SLH001, QYZDY-SSW-SLH008 and XDB07020100, and the Beijing Municipal Science and Technology Project under Grant No Z161100002116011.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yiyuan Mao
Jun Li
Yulong Huan
Jie Yuan
Zi-an Li
Ke Chai
Mingwei Ma
Shunli Ni
Jinpeng Tian
Shaobo Liu
Huaxue Zhou
Fang Zhou
Jianqi Li
Guangming Zhang
Kui Jin
Xiaoli Dong
Zhongxian Zhao
[1]Emery V J and Kivelson S A 1993 Physica C 209 597
[2]Müller K A and Benedek G 1993 Proceedings of the Workshop on Phase Separation in Cuprate Superconductors (Singapore: World Scientific)
[3]Sigmund E and Müller K A 1994 Proceedings of the Second International Workshop on Phase Separation in Cuprate Superconductors (Berlin: Springer-Verlag)
[4]Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y and Uchida S 1995 Nature 375 561
[5]Zhao Z X and Dong X L 1998 Gap Symmetry Fluctuations High-$T_{\rm c}$ Superconductors eds Bok J, Deutscher G, Pavuna D and Wolf S A (Cargese, France 1–13 September 1997) vol 371 p 171
[6]Dong X L, Dong Z F, Zhao B R, Zhao Z X, Duan X F, Peng L M, Huang W W, Xu B, Zhang Y Z, Guo S Q, Zhao L H and Li L 1998 Phys. Rev. Lett. 80 2701
[7]Wu T, Mayaffre H, Kr?mer S, Horvati? M, Berthier C, Hardy W N, Liang R, Bonn D A and Julien M H 2011 Nature 477 191
[8]Campi G, Bianconi A, Poccia N, Bianconi G, Barba L, Arrighetti G, Innocenti D, Karpinski J, Zhigadlo N D, Kazakov S M, Burghammer M, Zimmermann M V, Sprung M and Ricci A 2015 Nature 525 359
[9]Caivano R, Fratini M, Poccia N, Ricci A, Puri A, Ren Z A, Dong X L, Yang J, Lu W, Zhao Z X, Barba L and Bianconi A 2009 Supercond. Sci. Technol. 22 014004
[10]Drew A J, Niedermayer C, Baker P J, Pratt F L, Blundell S J, Lancaster T, Liu R H, Wu G, Chen X H, Watanabe I, Malik V K, Dubroka A, Roessle M, Kim K W, Baines C and Bernhard C 2009 Nat. Mater. 8 310
[11]Goko T, Aczel A A, Baggio-Saitovitch E, Bud'ko S L, Canfield P C, Carlo J P, Chen G F, Dai P, Hamann A C, Hu W Z, Kageyama H, Luke G M, Luo J L, Nachumi B, Ni N, Reznik D, Sanchez-Candela D R, Savici A T, Sikes K J, Wang N L, Wiebe C R, Williams T J, Yamamoto T, Yu W and Uemura Y J 2009 Phys. Rev. B 80 024508
[12]Park J T, Inosov D S, Niedermayer C, Sun G L, Haug D, Christensen N B, Dinnebier R, Boris A V, Drew A J, Schulz L, Shapoval T, Wolff U, Neu V, Yang X, Lin C T, Keimer B and Hinkov V 2009 Phys. Rev. Lett. 102 117006
[13]Chia E E M, Talbayev D, Zhu J X, Yuan H Q, Park T, Thompson J D, Panagopoulos C, Chen G F, Luo J L, Wang N L and Taylor A J 2010 Phys. Rev. Lett. 104 027003
[14]Wiesenmayer E, Luetkens H, Pascua G, Khasanov R, Amato A, Potts H, Banusch B, Klauss H H and Johrendt D 2011 Phys. Rev. Lett. 107 237001
[15]Civardi E, Moroni M, Babij M, Bukowski Z and Carretta P 2016 Phys. Rev. Lett. 117 217001
[16]Wang Z, Song Y J, Shi H L, Wang Z W, Chen Z, Tian H F, Chen G F, Guo J G, Yang H X and Li J Q 2011 Phys. Rev. B 83 140505(R)
[17]Chen F, Xu M, Ge Q Q, Zhang Y, Ye Z R, Yang L X, Jiang J, Xie B P, Che R C, Zhang M, Wang A F, Chen X H, Shen D W, Hu J P and Feng D L 2011 Phys. Rev. X 1 021020
[18]Li W, Ding H, Deng P, Chang K, Song C L, He K, Wang L L, Ma X C, Hu J P, Chen X and Xue Q K 2012 Nat. Phys. 8 126
[19]Zhou Y, Miao L, Wang P, Zhu F F, Jiang W X, Jiang S W, Zhang Y, Lei B, Chen X H, Ding H F, Zheng H, Zhang W T, Jia J F, Qian D and Wu D 2018 Phys. Rev. Lett. 120 097001
[20]Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
[21]Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G and Zhao Z 2015 J. Am. Chem. Soc. 137 66
[22]Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X and Cheng J G 2018 Nat. Commun. 9 380
[23]Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z and Feng D L 2015 Phys. Rev. B 92 060504(R)
[24]Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z and Zhou X J 2016 Nat. Commun. 7 10608
[25]Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F and Zhao Z 2015 Phys. Rev. B 92 064515
[26]Chen W, Zeng C, Kaxiras E and Zhang Z 2016 Phys. Rev. B 93 064517
[27]Chen M X, Chen W, Zhang Z and Weinert M 2017 Phys. Rev. B 96 245111
[28]Zhou X, Borg C K H, Lynn J W, Saha S R, Paglione J and Rodriguez E E 2016 J. Mater. Chem. C 4 3934
[29]Ma M, Wang L, Bourges P, Sidis Y, Danilkin S and Li Y 2017 Phys. Rev. B 95 100504(R)
[30]Pan B, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q, Hao Y, Wo H, Yin Z, Maier T A and Zhao J 2017 Nat. Commun. 8 123
[31]Huang Y L, Feng Z P, Yuan J, Hu W, Li J, Ni S L, Liu S B, Mao Y Y, Zhou H X, Wang H B, Zhou F, Zhang G M, Jin K, Dong X L and Zhao Z X 2017 arXiv:1711.02920
[32]Huang Y, Feng Z, Ni S, Li J, Hu W, Liu S, Mao Y, Zhou H, Zhou F, Jin K, Wang H, Yuan J, Dong X and Zhao Z 2017 Chin. Phys. Lett. 34 077404
[33]Peng L M, Dong Z F, Dong X L, Zhao B R, Duan X F and Zhao Z X 2000 Micron 31 551
[34]Peng L M, Gao M, Dong Z F, Dong X L, Zhao B R and Zhao Z X 2000 Phys. Rev. B 62 189
[35]Dong X L, Lu W, Yang J, Yi W, Li Z C, Zhang C, Ren Z A, Che G C, Sun L L, Zhou F, Zhou X J and Zhao Z X 2010 Phys. Rev. B 82 212506
[36]Chen D P, Lin C T, Maljuk A and Zhou F 2016 Growth and Characterization of Bulk Superconductor Material (Switzerland: Springer)
[37]Sun H, Woodruff D N, Cassidy S J, Allcroft G M, Sedlmaier S J, Thompson A L, Bingham P A, Forder S D, Cartenet S, Mary N, Ramos S, Foronda F R, Williams B H, Li X, Blundell S J and Clarke S J 2015 Inorg. Chem. 54 1958
[38]Pachmayr U, Nitsche F, Luetkens H, Kamusella S, Brueckner F, Sarkar R, Klauss H H and Johrendt D 2015 Angew. Chem. Int. Ed. 54 293
[39]Lynn J W, Zhou X, Borg C K H, Saha S R, Paglione J and Rodriguez E E 2015 Phys. Rev. B 92 060510(R)
Related articles from Frontiers Journals
[1] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 057402
[2] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 057402
[3] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 057402
[4] Yun Xie, Junsheng Feng, Hongjun Xiang, Xingao Gong. Interplay of Strain and Magnetism in FeSe Monolayers[J]. Chin. Phys. Lett., 2019, 36(5): 057402
[5] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 057402
[6] Bo-Jin Pan, Kang Zhao, Tong Liu, Bin-Bin Ruan, Shuai Zhang, Gen-Fu Chen, Zhi-An Ren. Direct Microwave Synthesis of 11-Type Fe(Te,Se) Polycrystalline Superconductors with Enhanced Critical Current Density[J]. Chin. Phys. Lett., 2019, 36(1): 057402
[7] Zhi-Qing Han, Xun Shi, Xi-Liang Peng, Yu-Jie Sun, Shan-Cai Wang. High-Quality FeTe$_{1-x}$Se$_{x}$ Monolayer Films on SrTiO$_{3}$(001) Substrates Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2017, 34(10): 057402
[8] Kun Zhao, Hai-Cheng Lin, Wan-Tong Huang, Xiao-Peng Hu, Xi Chen, Qi-Kun Xue, Shuai-Hua Ji. Molecular Beam Epitaxy Growth of Tetragonal FeS Films on SrTiO$_{3}$(001) Substrates[J]. Chin. Phys. Lett., 2017, 34(8): 057402
[9] Xiao-Chuan Wang, Jia Yu, Bin-Bin Ruan, Bo-Jin Pan, Qing-Ge Mu, Tong Liu, Kang Zhao, Gen-Fu Chen, Zhi-An Ren. Revisiting the Electron-Doped SmFeAsO: Enhanced Superconductivity up to 58.6K by Th and F Codoping[J]. Chin. Phys. Lett., 2017, 34(7): 057402
[10] Pai Xiang, Ji-Shan Liu, Ming-Ying Li, Hai-Feng Yang, Zheng-Tai Liu, Cong-Cong Fan, Da-Wei Shen , Zhen Wang, Zhi Liu. In Situ Electronic Structure Study of Epitaxial Niobium Thin Films by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2017, 34(7): 057402
[11] Dong-Yun Chen, Jia Yu, Bin-Bin Ruan, Qi Guo, Lei Zhang, Qing-Ge Mu, Xiao-Chuan Wang, Bo-Jin Pan, Gen-Fu Chen, Zhi-An Ren. Superconductivity in Undoped CaFe$_{2}$As$_{2}$ Single Crystals[J]. Chin. Phys. Lett., 2016, 33(06): 057402
[12] HONG Xiao-Chen, WANG Ai-Feng, ZHANG Zhen, PAN Jian, HE Lan-Po, LUO Xi-Gang, CHEN Xian-Hui, LI Shi-Yan. Doping Evolution of the Superconducting Gap Structure in Heavily Hole-Doped Ba1−xKxFe2As2: a Heat Transport Study[J]. Chin. Phys. Lett., 2015, 32(12): 057402
[13] LIANG Yi, WU Xian-Xin, HU Jiang-Ping. Electronic Structure Properties in the Nematic Phases of FeSe[J]. Chin. Phys. Lett., 2015, 32(11): 057402
[14] YANG Jie, ZHOU Rui, WEI Lin-Lin, YANG Huai-Xin, LI Jian-Qi, ZHAO Zhong-Xian, ZHENG Guo-Qing. New Superconductivity Dome in LaFeAsO1−xFx Accompanied by Structural Transition[J]. Chin. Phys. Lett., 2015, 32(10): 057402
[15] KONG Wan-Dong, LIU Zhi-Guo, WU Shang-Fei, WANG Gang, QIAN Tian, YIN Jia-Xin, RICHARD Pierre, YAN Lei, DING Hong. Growth of High-Quality Superconducting FeSe0.5Te0.5 Thin Films Suitable for Angle-Resolved Photoemission Spectroscopy Measurements via Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2015, 32(08): 057402
Full text