Chin. Phys. Lett.  2018, Vol. 35 Issue (4): 048502    DOI: 10.1088/0256-307X/35/4/048502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator
Ya-Yi Chen1,2, Yuan Liu2**, Zhao-Hui Wu1**, Li Wang1, Bin Li1, Yun-Fei En2, Yi-Qiang Chen2
1School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640
2Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Produce Reliability and Environmental Testing Research Institute, Guangzhou 510610
Cite this article:   
Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu et al  2018 Chin. Phys. Lett. 35 048502
Download: PDF(781KB)   PDF(mobile)(775KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Low-frequency noise (LFN) in all operation regions of amorphous indium zinc oxide (a-IZO) thin film transistors (TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we extract the distribution of localized states in the band gap and the spatial distribution of border traps in the gate dielectric, and study the dependence of measured noise on the characteristic temperature of localized states for a-IZO TFTs with Al$_2$O$_3$ gate dielectric. Further study on the LFN measured results shows that the gate voltage dependent noise data closely obey the mobility fluctuation model, and the average Hooge's parameter is about $1.18\times10^{-3}$. Considering the relationship between the free carrier number and the field effect mobility, we simulate the LFN using the $\Delta N$–$\Delta\mu$ model, and the total trap density near the IZO/oxide interface is about $1.23\times 10^{18}$ cm$^{-3}$eV$^{-1}$.
Received: 24 December 2017      Published: 13 March 2018
PACS:  85.30.Tv (Field effect devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  73.50.Dn (Low-field transport and mobility; piezoresistance)  
  77.55.hf (ZnO)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61574048, the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090912002 and 2015B090901048, and the Pearl River S&T Nova Program of Guangzhou under Grant No 201710010172.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/4/048502       OR      https://cpl.iphy.ac.cn/Y2018/V35/I4/048502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ya-Yi Chen
Yuan Liu
Zhao-Hui Wu
Li Wang
Bin Li
Yun-Fei En
Yi-Qiang Chen
[1]Xu H, Lan L F, Xu M et al 2011 Appl. Phys. Lett. 99 253501
[2]Noulis T, Siskos S and Sarrabayrouse G 2008 Int. J. Circ. Theor. Appl. 36 813
[3]Lan L F and Peng J B 2011 IEEE Trans. Electron Devices 58 1452
[4]Choi H S, Jeon S H, Kim H J et al 2011 IEEE Electron Device Lett. 32 1083
[5]Kim T H, Nam Y Y, Hur J Y et al 2016 IEEE Electron Device Lett. 37 1131
[6]Kim H J, Jeong C Y, Bae S D et al 2017 J. Vac. Sci. Technol. B 35 010601
[7]Dimitriadis C A, Brini J, Lee J I et al 1999 J. Appl. Phys. 85 3934
[8]Jayaraman R and Sodini C G 1989 IEEE Trans. Electron Devices 36 1773
[9]Cai M and Yao R 2017 J. Appl. Phys. 122 154503
[10]Fung T C, Baek G and Kanicki J 2010 J. Appl. Phys. 108 074518
[11]Hooge F N 1994 IEEE Trans. Electron Devices 41 1926
[12]Ghibaudo G, Roux O and Nguyen D C 1991 Phys. Status Solidi A 124 571
[13]Xu Y, Minari T and Tsukagoshi K 2011 Solid-State Electron. 61 106
[14]Liu Y, Deng S and Chen R S 2018 IEEE Electron Device Lett. 39 200
[15]He H Y, Zheng X R and Zhang S D 2015 IEEE Electron Device Lett. 36 156
[16]Pichon L, Cretu B and Boukhenoufa A 2009 Thin Solid Films 517 6367
[17]Liu Y, Wu W J, Li B et al 2014 Acta Phys. Sin. 63 098503 (in Chinese)
[18]Liu Y, Wu W J, Li B et al 2015 Chin. Phys. Lett. 32 088506
[19]Lee J et al 2013 IEEE Electron Device Lett. 34 1521
[20]Wang J, Liu Y, Liu Y R et al 2016 Acta Phys. Sin. 108 106103
[21]Ioannidis E G et al 2010 J. Appl. Phys. 108 106103
[22]Theodorou G C, Tsormpatzoglou A, Dimitriadis C A et al 2011 IEEE Electron Device Lett. 32 898
[23]Lee J M, Cheong W S, Hwang C S et al 2009 IEEE Electron Device Lett. 30 505
[24]Cho I T, Cheong W S, Hwang C S et al 2011 IEEE Electron Device Lett. 30 828
Related articles from Frontiers Journals
[1] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 048502
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 048502
[3] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 048502
[4] Cheng-Lei Guo, Bin-Bin Wang, Wei Xia, Yan-Feng Guo, Jia-Min Xue. A New Effect of Oxygen Plasma on Two-Dimensional Field-Effect Transistors: Plasma Induced Ion Gating and Synaptic Behavior[J]. Chin. Phys. Lett., 2019, 36(7): 048502
[5] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 048502
[6] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 048502
[7] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 048502
[8] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 048502
[9] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 048502
[10] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 048502
[11] Teng Ma, Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, Dan-Dan Su, Xue-Feng Yu, Qi Guo. An Increase in TDDB Lifetime of Partially Depleted SOI Devices Induced by Proton Irradiation[J]. Chin. Phys. Lett., 2017, 34(7): 048502
[12] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 048502
[13] Pei-Fu Du, Ping Feng, Xiang Wan, Yi Yang, Qing Wan. Amorphous InGaZnO$_{4}$ Neuron Transistors with Temporal and Spatial Summation Function[J]. Chin. Phys. Lett., 2017, 34(5): 048502
[14] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 048502
[15] Jia-Min Gong, Quan Wang, Jun-Da Yan, Feng-Qi Liu, Chun Feng, Xiao-Liang Wang, Zhan-Guo Wang. Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer: Material Growth and Device Fabrication[J]. Chin. Phys. Lett., 2016, 33(11): 048502
Viewed
Full text


Abstract