Chin. Phys. Lett.  2018, Vol. 35 Issue (3): 038102    DOI: 10.1088/0256-307X/35/3/038102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings
Hao-Jing Zhang1,3, Gai-Ge Zheng1,2,3**, Yun-Yun Chen1,2,3, Xiu-Juan Zou1,3, Lin-Hua Xu1,3
1Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing 210044
2Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044
3School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044
Cite this article:   
Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen et al  2018 Chin. Phys. Lett. 35 038102
Download: PDF(1367KB)   PDF(mobile)(1358KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To achieve the enhancement and manipulation of light absorption in graphene within the visible and near infrared regions, a design consists of high-contrast gratings and two evanescently coupled slabs with graphene monolayer is demonstrated. The operation principle and design process of the proposed structure are analyzed using the coupled mode theory, which is confirmed by the rigorous coupled wave analysis. It is proved that the absorptance of graphene monolayer can be greatly enhanced to unity. The thickness of grating and slab layers can significantly change the line width and resonant mode position in the absorption spectra. Furthermore, high tunability in amplitude and bandwidth of the absorption spectra can be achieved by controlling the structural parameters of the hybrid structure. The proposed devices could be efficiently exploited as tunable and selective absorbers, and could be allowed to realize other two-dimensional materials-based selective photo-detectors.
Received: 18 December 2017      Published: 25 February 2018
PACS:  81.05.ue (Graphene)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.66.-w (Optical properties of specific thin films)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 41675154, the Six Major Talent Peak Expert of Jiangsu Province under Grant No 2015-XXRJ-014, and the Jiangsu 333 High-Level Talent Cultivation Program under Grant No BRA2016425.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/3/038102       OR      https://cpl.iphy.ac.cn/Y2018/V35/I3/038102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hao-Jing Zhang
Gai-Ge Zheng
Yun-Yun Chen
Xiu-Juan Zou
Lin-Hua Xu
[1]Novoselov K S, Geim A K, Morozov S V et al 2004 Science 306 666
[2]Wang G, Long M Q and Zhang D 2017 Chin. Phys. Lett. 34 097303
[3]Ning R X, Jiao Z and Bao J 2017 Chin. Phys. Lett. 34 107801
[4]Liu J T, Liu N H, Li J et al 2012 Appl. Phys. Lett. 101 052104
[5]Hu J H, Huang Y Q, Duan X F et al 2014 Appl. Phys. Lett. 105 221113
[6]Huang H L, Xia H, Guo Z B et al 2017 Chin. Phys. Lett. 34 117801
[7]Zhang H, Tang D Y, Zhao L M et al 2009 Opt. Express 17 17630
[8]Zheng Z W, Zhao C J and Lu S B 2012 Opt. Express 20 23201
[9]Ni Z Y, Ma L L, Du S C et al 2017 ACS Nano 11 9854
[10]Wang J G, Zhu M P, Sun J et al 2016 Opt. Mater. 62 227
[11]Piper J R and Fan S 2014 ACS Photon. 1 347
[12]Wang W, Klots A, Yang Y et al 2015 Appl. Phys. Lett. 106 181104
[13]Grande M, Vincenti M A, Stomeo T et al 2014 Opt. Express 22 31511
[14]Pirruccio G, Martín Moreno L, G Lozano G et al 2013 ACS Nano 7 4810
[15]Peng Y X, He M D, Li Z J et al 2017 Opt. Commun. 382 86
[16]Vasić B and Gajić R 2014 Opt. Lett. 39 6253
[17]Grande M, Vincenti M A, Stomeo T et al 2014 IEEE Photon. J. 6 1
[18]Vincenti M A, de D, Grande M et al 2013 Opt. Lett. 38 3550
[19]Gan X, Mak K F, Gao Y et al 2012 Nano Lett. 12 5626
[20]Echtermeyer T J, Britnell L, Jasnos P K et al 2011 Nat. Commun. 2 458
[21]Hashemi M, Farzad M H, Mortensen N A et al 2013 J. Opt. 15 055003
[22]Zhao B, Zhao J M and Zhang Z M 2014 Appl. Phys. Lett. 105 031905
[23]Zhao B, Zhao J M and Zhang Z M 2015 J. Opt. Soc. Am. B 32 1176
[24]Zhao B and Zhang Z M 2015 ACS Photon. 2 1611
[25]Liu X, Chen S, Zang W et al 2011 Opt. Express 19 8233
[26]Zhu L X, Liu F Y, Lin H T et al 2016 Light: Sci. Appl. 5 e16052
[27]Guo C C, Z H, Yuan X D et al 2016 Adv. Opt. Mater. 4 1955
[28]Piper J R, Liu V and Fan S 2014 Appl. Phys. Lett. 104 251110
[29]Lee S, T Q Tran T Q, Heo H et al 2017 Sci. Rep. 7 4760
[30]Hu J H, Huang Y Q, Ren X M et al 2014 Chin. Phys. Lett. 31 064205
[31]Lu H, Gan X T, Jia B H et al 2016 Opt. Lett. 41 4743
[32]Zheng G G, Zhang H J, Xu L H et al 2016 Opt. Lett. 41 2274
[33]Zhang H, Virally S, Bao Q L et al 2012 Opt. Lett. 37 1856
[34]Wang J L, Fang H H and Wang X D 2017 Small 13 1700894
[35]Wang J L and Hu W D 2017 Chin. Phys. B 26 037106
Related articles from Frontiers Journals
[1] Jia-Jun Ma, Zhen-Yu Wang, Shui-Gang Xu, Yu-Xiang Gao, Yu-Yang Zhang, Qing Dai, Xiao Lin, Shi-Xuan Du, Jindong Ren, and Hong-Jun Gao. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(4): 038102
[2] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 038102
[3] Fuxin Wang, Chao Zhang, Yanmei Yang, Yuanyuan Qu, Yong-Qiang Li, Baoyuan Man, and Weifeng Li. Tuning the Water Desalination Performance of Graphenic Layered Nanomaterials by Element Doping and Inter-Layer Spacing[J]. Chin. Phys. Lett., 2020, 37(11): 038102
[4] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 038102
[5] Zhong Wang, Zhiyang Yuan, and Feng Liu. Extended Nernst–Planck Equation Incorporating Partial Dehydration Effect[J]. Chin. Phys. Lett., 2020, 37(9): 038102
[6] S. Fahad, M. Ali, S. Ahmed, S. Khan, S. Alam, S. Akhtar. Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix[J]. Chin. Phys. Lett., 2017, 34(10): 038102
[7] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 038102
[8] ZHANG Yu-Ping, LI Tong-Tong, LV Huan-Huan, HUANG Xiao-Yan, ZHANG Xiao, XU Shi-Lin, ZHANG Hui-Yun. Graphene-Based Tunable Polarization Insensitive Dual-Band Metamaterial Absorber at Mid-Infrared Frequencies[J]. Chin. Phys. Lett., 2015, 32(06): 038102
[9] GAO Chuan-Wei, WANG Ying-Ying, JIANG Jie, NAN Hai-Yan, NI Zhen-Hua. Raman Study of Polydimethylsiloxane Substrate Effect on Hydrogenation of Graphene[J]. Chin. Phys. Lett., 2015, 32(5): 038102
[10] ZHOU Xiang, CHEN Ji, GU Lin, MIAO Ling. Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene[J]. Chin. Phys. Lett., 2015, 32(02): 038102
[11] LIU Qing-Bin, YU Cui, LI Jia, SONG Xu-Bo, HE Ze-Zhao, LU Wei-Li, GU Guo-Dong, WANG Yuan-Gang, FENG Zhi-Hong. Radio-Frequency Performance of Epitaxial Graphene Field-Effect Transistors on Sapphire Substrates[J]. Chin. Phys. Lett., 2014, 31(07): 038102
[12] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 038102
[13] CHEN Ya-Qin. Determination of the In-Plane Optical Conductivity of Multilayer Graphene Supported on a Transparent Substrate of Finite Thickness from Normal-Incidence Transmission Spectra[J]. Chin. Phys. Lett., 2014, 31(05): 038102
[14] Tatnatchai Suwannasit, Rassmidara Hoonsawat, I-Ming Tang, Bumned Soodchomshom. Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers[J]. Chin. Phys. Lett., 2014, 31(03): 038102
[15] Bumned Soodchomshom. Pseudo Spin Torque Induced by Strain Field of Dirac Fermions in Graphene[J]. Chin. Phys. Lett., 2013, 30(12): 038102
Viewed
Full text


Abstract