Chin. Phys. Lett.  2018, Vol. 35 Issue (3): 033701    DOI: 10.1088/0256-307X/35/3/033701
ATOMIC AND MOLECULAR PHYSICS |
Enhanced Loading of $^{40}$K from Natural Abundance Potassium Source with a High Performance 2D$^{+}$ MOT
Jiang-Ling Yang1,2, Yun Long1, Wei-Wei Gao1, Lan Jin1, Zhan-Chun Zuo1,2, Ru-Quan Wang1,2**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Jiang-Ling Yang, Yun Long, Wei-Wei Gao et al  2018 Chin. Phys. Lett. 35 033701
Download: PDF(477KB)   PDF(mobile)(471KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract $^{40}$K is one of the most important atomic species for ultra-cold atomic physics. Due to the extremely low concentration (0.012%) of $^{40}$K in natural abundance of potassium, most experiments use 4–10% enriched potassium source, which have greatly suffered from the extremely low annual production and significant price hikes in recent years. Using naturally abundant potassium source, we capture $5.4\times10^{6}$ cold $^{40}$K atoms with the help of a high performance of two-dimensional magneto-optical trap (2D$^{+}$ MOT), which is almost three orders of magnitude greater than previous results without the 2D$^{+}$ MOT. The number of the $^{40}$K atoms is sufficient for most ultra-cold $^{40}$K experiments, and our approach provides an ideal alternative for the field.
Received: 21 November 2017      Published: 25 February 2018
PACS:  37.10.De (Atom cooling methods)  
  37.10.Gh (Atom traps and guides)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300600 and 2016YFA0301500, and the National Natural Science Foundation of China under Grant Nos 11474347, 61227902 and 61775232.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/3/033701       OR      https://cpl.iphy.ac.cn/Y2018/V35/I3/033701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiang-Ling Yang
Yun Long
Wei-Wei Gao
Lan Jin
Zhan-Chun Zuo
Ru-Quan Wang
[1]Philips W D, Prodan J V and Metcalf H J 1985 J. Opt. Soc. Am. B 2 1751
[2]Phillips W D 1998 Rev. Mod. Phys. 70 721
[3]Winel, D J and Itano W M 1979 Phys. Rev. A 20 1521
[4]Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[5]Davis K B, Mewes M O, Andrews M R, Van-Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[6]Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[7]deMarco B and Jin D S 1999 Science 285 1703
[8]Loftus T, Regal C A, Ticknor C, Bohn J L and Jin D S 2002 Phys. Rev. Lett. 88 173201
[9]Holl, M, Kokkelmans S J J M F, Chiofalo M L and Walser R 2001 Phys. Rev. Lett. 87 120406
[10]Ohashi Y and Griffin A 2002 Phys. Rev. Lett. 89 130402
[11]Stajic J, Milstein J N, Chen Q J, Chiofalo M L, Holl, M J and Levin K 2004 Phys. Rev. A 69 063610
[12]Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[13]Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C and Grimm R 2006 Nature 440 315
[14]Inouye S, Goldwin J, Olsen M L, Ticknor C, Bohn J L and Jin D S 2004 Phys. Rev. Lett. 93 183201
[15]Ferlaino F, D'Errico C, Roati G, Zaccanti M, Inguscio M, Modugno G and Simoni A 2006 Phys. Rev. A 73 040702(R)
[16]Ospelkaus S, Ospelkaus C, Humbert L, Sengstock K and Bongs K 2006 Phys. Rev. Lett. 97 120403
[17]Jee W P, Wu C H, Santiago I, Tiecke T G, Will S, Ahmadi P and Zwierlein M W 2012 Phys. Rev. A 85 051602(R)
[18]Moses S A, Covey J P, Miecnikowski M T, Jin D S and Ye J 2016 Nat. Phys. 13 13
[19]DeMille D 2002 Phys. Rev. Lett. 88 067901
[20]Cataliotti F S, Cornell E A, Fort C, Inguscio M, Marin F, Prevedelli M, Ricci L and Tino G M 1998 Phys. Rev. A 57 1136
[21]DeMarco B, Rohner H and Jin D S 1999 Rev. Sci. Instrum. 70 1967
[22]Wei D, Xiong D Z, Chen H X, Wang P J, Guo L and Zhang J 2007 Chin. Phys. Lett. 24 679
[23]Wu C H, Santiago I, Jee W P, Ahmadi P and Zwierlein M W 2011 Phys. Rev. A 84 011601(R)
[24]Lin Y J, Perry A R, Compton R L, Spielman I B and Porto J V 2009 Phys. Rev. A 79 063631
[25]Zhang F, Long Y, Yang J L, Ma G Q, Yin J P and Wang R Q 2015 Chin. Phys. Lett. 32 123701
[26]Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S and Ye J 2010 Science 1184121
[27]Taglieber M, Voigt A C, Aoki T, Hänsch T W and Dieckmann K 2008 Phys. Rev. Lett. 100 010401
[28]Xiong D Z, Chen H X, Wang P J, Yu X D, Gao F and Zhang J 2008 Chin. Phys. Lett. 25 843
[29]Ridinger A, Chaudhuri S, Salez T, Fernandes D R, Bouloufa N, Dulieu O, Salomon C and Chevy F 2011 Europhys. Lett. 96 33001
[30]Ridinger A, Chaudhuri S, Salez T, Eismann U, Fernandes D R, Magalhães K, Wilkowski D, Salomon C and Chevy F 2011 Eur. Phys. J. D 65 223
Related articles from Frontiers Journals
[1] Zhu Ma, Chengyin Han, Xunda Jiang, Ruihuan Fang, Yuxiang Qiu, Minhua Zhao, Jiahao Huang, Bo Lu, and Chaohong Lee. Production of $^{87}$Rb Bose–Einstein Condensate in an Asymmetric Crossed Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(10): 033701
[2] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 033701
[3] Yadong Wu, Zengming Meng, Kai Wen, Chengdong Mi, Jing Zhang, and Hui Zhai. Active Learning Approach to Optimization of Experimental Control[J]. Chin. Phys. Lett., 2020, 37(10): 033701
[4] Wei Qi, Ming-Cheng Liang, Han Zhang, Yu-Dong Wei, Wen-Wei Wang, Xu-Jie Wang, Xibo Zhang. Experimental Realization of Degenerate Fermi Gases of $^{87}$Sr Atoms with 10 or Two Spin Components[J]. Chin. Phys. Lett., 2019, 36(9): 033701
[5] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 033701
[6] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 033701
[7] Xiu-Mei Wang, Yan-Ling Meng, Ya-Ning Wang, Jin-Yin Wan, Ming-Yuan Yu, Xin Wang, Ling Xiao, Tang Li, Hua-Dong Cheng, Liang Liu. Dick Effect in the Integrating Sphere Cold Atom Clock[J]. Chin. Phys. Lett., 2017, 34(6): 033701
[8] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 033701
[9] Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong, Kai Li, Kai-Jun Jiang. Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap[J]. Chin. Phys. Lett., 2016, 33(07): 033701
[10] Lin Li, Qiu-Zhi Qu, Bin Wang, Tang Li, Jian-Bo Zhao, Jing-Wei Ji, Wei Ren, Xin Zhao, Mei-Feng Ye, Yuan-Yuan Yao, De-Sheng Lü, Liang Liu. Initial Tests of a Rubidium Space Cold Atom Clock[J]. Chin. Phys. Lett., 2016, 33(06): 033701
[11] YU Wei-Wei, YU Rong-Mei, CHENG Yong-Jun. Tune-Out Wavelengths for the Rb Atom[J]. Chin. Phys. Lett., 2015, 32(12): 033701
[12] ZHANG Feng, LONG Yun, YANG Jiang-Ling, MA Guo-Qiang, YIN Ji-Ping, WANG Ru-Quan. High-Performance Sodium Bose–Einstein Condensate Apparatus with a Hybrid Trap and Long-Distance Magnetic Transfer[J]. Chin. Phys. Lett., 2015, 32(12): 033701
[13] WANG Qiang, LIN Yi-Ge, GAO Fang-Lin, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. A Longitudinal Zeeman Slower Based on Ring-Shaped Permanent Magnets for a Strontium Optical Lattice Clock[J]. Chin. Phys. Lett., 2015, 32(10): 033701
[14] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 033701
[15] ZHENG Ben-Chang, CHENG Hua-Dong, MENG Yan-Ling, XIAO Ling, WAN Jin-Yin, LIU Liang. Observation of Faraday Rotation in Cold Atoms in an Integrating Sphere[J]. Chin. Phys. Lett., 2014, 31(07): 033701
Viewed
Full text


Abstract