Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 028501    DOI: 10.1088/0256-307X/35/2/028501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature
Yi Zhang, Gen-Quan Han**, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
Cite this article:   
Yi Zhang, Gen-Quan Han, Yan Liu et al  2018 Chin. Phys. Lett. 35 028501
Download: PDF(661KB)   PDF(mobile)(657KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract TiO$_{2}$ deposited at extremely low temperature of 120$^\circ\!$C by atomic layer deposition is inserted between metal and n-Ge to relieve the Fermi level pinning. X-ray photoelectron spectroscopy and cross-sectional transmission electron microscopy indicate that the lower deposition temperature tends to effectively eliminate the formation of GeO$_{x}$ to reduce the tunneling resistance. Compared with TiO$_{2}$ deposited at higher temperature of 250$^\circ\!$C, there are more oxygen vacancies in lower-temperature-deposited TiO$_{2}$, which will dope TiO$_{2}$ contributing to the lower tunneling resistance. Al/TiO$_{2}$/n-Ge metal-insulator-semiconductor diodes with 2 nm 120$^\circ\!$C deposited TiO$_{2}$ achieves 2496 times of current density at $-$0.1 V compared with the device without the TiO$_{2}$ interface layer case, and is 8.85 times larger than that with 250$^\circ\!$C deposited TiO$_{2}$. Thus inserting extremely low temperature deposited TiO$_{2}$ to depin the Fermi level for n-Ge may be a better choice.
Received: 12 October 2017      Published: 23 January 2018
PACS:  85.30.Hi (Surface barrier, boundary, and point contact devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Kk (Junction diodes)  
  85.30.Tv (Field effect devices)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61534004, 61604112 and 61622405.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/028501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/028501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi Zhang
Gen-Quan Han
Yan Liu
Huan Liu
Jin-Cheng Zhang
Yue Hao
[1]Xie R, Phung T H, He W, Yu M and Zhu C 2009 IEEE Trans. Electron Devices 56 1330
[2]Kuzum D, Krishnamohan T, Nainani A, Sun Y, Pianetta P, Wong H and Saraswat K C 2011 IEEE Trans. Electron Devices 58 59
[3]Dimoulas A, Tsipas P, Sotiropoulos A and Evangelou E 2006 Appl. Phys. Lett. 89 252110
[4]Nishimura T, Kita K and Toriumi A 2007 Appl. Phys. Lett. 91 123123
[5]Zhou Y, Ogawa M, Han X and Wang K 2008 Appl. Phys. Lett. 93 202105
[6]Nishimura T, Kita K and Toriumi A 2008 Appl. Phys. Express 1 051406
[7]Connelly D, Faulkner C, Clifton P and Grupp D 2006 Appl. Phys. Lett. 88 012105
[8]Manik P, Mishra R, Kishore V, Ray P, Nainani A, Huang Yi, Abraham M, Ganguly U and Lodha S 2012 Appl. Phys. Lett. 101 182105
[9]Lin J, Roy A, Nainani A, Sun Y and Saraswat K C 2011 Appl. Phys. Lett. 98 092113
[10]Kim G, Kim J, Kim S, Jo J, Shin C, Park J, Saraswat K C and Yu H 2014 IEEE Electron. Devices Lett. 35 1076
[11]Biswas D, Biswas J, Ghosh S, Wood B and Lodha S 2017 Appl. Phys. Lett. 110 052104
[12]Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R, Wang C, Zhang J and Li Y 2011 Nano Lett. 11 3026
[13]Zhang L, Li H, Guo Y, Tang K, Woicik J, Robertson J and McIntyre P 2015 ACS Appl. Mater. Interfaces 7 20499
[14]Kita K, Wang S K, Yoshida M, Lee C H, Nagashio K, Nishimura T, Toriumi A 2009 Electron Devices Meeting, IEEE International (Baltimore, MD, USA 7–9 December 2009) p 693
[15]Aarik J, Aidla A, Kiisler A, Uustare T and Sammelselg V 1997 Thin Solid Films 305 270
[16]Kim G, Kim S, Kim S, Park J, Seo Y, Cho B, Shin C, Shim J and Yu H 2016 ACS Appl. Mater. Interfaces 8 35419
[17]Gupta S, Manik P, Mishra R, Nainani A, Abraham M and Lodha S 2013 J. Appl. Phys. 113 234505
[18]Strobel A, Schnabel H, Reinhold U, Rauer S and Neidhardt A 2016 J. Vac. Sci. Technol. A 34 01A118
[19]Puurunen R L, Sajavaara T, Santala E, Miikkulainen V, Saukkonen, Laitinen M and Leskelä M 2011 J. Nanosci. Nanotechnol. 11 8101
[20]Figgemeiera E, Kylberga W, Constablea E, Scarisoreanub M, Alexandrescub R, Morjanb I, Birjegab R, Popovicib E, Fleacab C, Gavrila F L and Prodan G 2007 Appl. Surf. Sci. 254 1037
[21]Nasim F, Ali A, Bhatti A S and Naseem S 2011 J. Appl. Phys. 110 114517
[22]Hu J, Nainani A, Sun Y, Saraswat K C and Wong H 2011 Appl. Phys. Lett. 99 252104
Related articles from Frontiers Journals
[1] Ting-Ting Wang, Xiao Wang, Xiao-Bo Li, Jin-Cheng Zhang, Jin-Ping Ao. Temperature-Dependent Characteristics of GaN Schottky Barrier Diodes with TiN and Ni Anodes[J]. Chin. Phys. Lett., 2019, 36(5): 028501
[2] C. K. Sumesh**, K. D. Patel, V. M. Pathak, R. Srivastav . Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2[J]. Chin. Phys. Lett., 2011, 28(8): 028501
[3] ZHANG Yong-gang, LI Ai-zhen, A. G. Milnes. Schottky Barrier Heights of Cr Contacts on n- and p-Type 6H-SiC[J]. Chin. Phys. Lett., 1997, 14(6): 028501
Viewed
Full text


Abstract