Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 024202    DOI: 10.1088/0256-307X/35/2/024202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser
Qiang Gao1, Wu-Bin Weng2, Bo Li1**, Zhong-Shan Li1,2
1State Key Laboratory of Engines, Tianjin University, Tianjin 300072
2Division of Combustion Physics, Lund University, Lund SE-22100, Sweden
Cite this article:   
Qiang Gao, Wu-Bin Weng, Bo Li et al  2018 Chin. Phys. Lett. 35 024202
Download: PDF(804KB)   PDF(mobile)(802KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A compact optical setup for quantitative and spatially resolved measurement of atomic alkali concentration in combustion is demonstrated. Tunable diode laser absorption spectroscopy and laser-induced fluorescence are combined using a single continuous wave diode laser to measure the line-integration concentration and the relative distribution simultaneously, thereby obtaining the absolute concentration distribution along the laser beam. The results indicate the good performance of this method for one-dimensional quantitative measurement.
Received: 10 October 2017      Published: 23 January 2018
PACS:  42.62.Fi (Laser spectroscopy)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  88.20.jj (Combustion)  
  87.64.kv (Fluorescence)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 91541119 and 91541203.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/024202       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/024202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiang Gao
Wu-Bin Weng
Bo Li
Zhong-Shan Li
[1]Khan A A, Jong W D, Jansens P J and Spliethoff H 2009 Fuel. Process. Technol. 90 21
[2]Demirbas A 2005 Energy Sources 27 1385
[3]Scandrett L and Clift R 1984 J. Energy Ins. 57 391
[4]Sane A, Satija A, Lucht R P and Gore J P 2014 Appl. Phys. B 117 7
[5]Gao Q, Zhang Y G, Yu J, Wu S H, Zhang Z G, Zheng F, Lou X T and Guo W 2013 Sens. Actuators A 199 106
[6]Yu J, Zhang Y G, Gao Q, Hu G, Zhang Z G and Wu S H 2014 Opt. Lett. 39 1941
[7]Wu Q, Thomson M J and Chanda A 2005 Metall. Mater. Trans. B 36 53
[8]Bolshov M A, Kuritsyn Y A and Romanovskii Y V 2015 Spectrochim. Acta Part B 106 45
[9]Wang F, Cen K F, Li N, Huang Q X, Chao X, Yan J H and Chi Y 2010 Flow Meas. Instrum. 21 382
[10]Schlosser E, Fernholz T, Teichert H and Ebert V 2002 Spectrochim. Acta. Part. A 58 2347
[11]Ebert V, Fernholz T, Giesemann C, Pitz H, Teichert H, Wolfrum J and Jaritz H 2000 Proc. Combust. Inst. 28 423
[12]Eyk P J, Ashman P J, Alwahabi Z T and Nathan G J 2008 Combust. Flame 155 529
[13]He Y, Zhu J J, Li B, Wang Z H, Li Z S, Aldén M and Cen K F 2013 Energy Fuels 27 1123
[14]Sandström L and Malmberg D 2002 Spectrochim. Acta Part. A 58 2449
[15]Witzel Q, Klein A, Wagner S, Meffert C, Schulz C and Ebert V 2012 Appl. Phys. B 109 521
[16]Li B, Sun Z W, Li Z S, Aldén M, Jakobsen J G, Hansen S and Glarborg P 2013 Combust. Flame 160 959
[17]Zhang Z H, Song Q, Alwahabi Z T, Yao Q and Nathan G J 2015 Combust. Flame 162 496
[18]Xu L J, Liu C, Jing W Y, Cao Z, Xue X and Lin Y Z 2016 Rev. Sci. Instrum. 87 013101
[19]Song J, Hong Y, Wang G and Pan H 2013 Appl. Phys. B 112 529
[20]Deguchi Y, Kamimoto T and Kyota Y 2015 Flow Meas. Instrum. 46 312
[21]Fatehi H, He Y, Wang Z H, Li Z S, Bai X S, Aldén M and Cen K F 2015 Proc. Combust. Inst. 35 2389
[22]Suntz R, Becher H, Monkhouse P and Wofrum J 1988 Appl. Phys. B 47 287
[23]Ma Q L, Motto-Ros V, Bai X S and Yu J 2013 Appl. Phys. Lett. 103 204101
[24]Zhang P F, Li G, Zhang Y C, Guo Y, Wang J and Zhang T 2009 Phys. Rev. A 80 053420
[25]Hirose K, Liang Y, Kurosaka Y, Watanabe A, Sugiyama T and Noda S 2014 Nat. Photon. 8 406
[26]Lee J H, Shubin I, Yao J, Bickford J, Lou Y, Lin S, Djordjevic S S, Thacker H D, Cunningham, J E, Ray K, Zheng X Z and Krishnamoorthy A V 2014 Opt. Express 22 7678
Related articles from Frontiers Journals
[1] Canzhu Tan, Fachao Hu, Zhijing Niu, Yuhai Jiang, Matthias Weidemüller, and Bing Zhu. Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(9): 024202
[2] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 024202
[3] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 024202
[4] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 024202
[5] Meng-Han Wang, Jun-Le Qu, Ming Zhu. Partially Overlapped Dual Laser Beams to Reduce Ablation Craters[J]. Chin. Phys. Lett., 2020, 37(1): 024202
[6] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 024202
[7] Xiu-Mei Wang, Yan-Ling Meng, Ya-Ning Wang, Jin-Yin Wan, Ming-Yuan Yu, Xin Wang, Ling Xiao, Tang Li, Hua-Dong Cheng, Liang Liu. Dick Effect in the Integrating Sphere Cold Atom Clock[J]. Chin. Phys. Lett., 2017, 34(6): 024202
[8] Wei-Min Sun, Qiang Huang, Zong-Jun Huang, Ping-Wen Wang, Jun-Hai Zhang. All-Optical Vector Cesium Magnetometer[J]. Chin. Phys. Lett., 2017, 34(5): 024202
[9] Qi Zhou, Peng-Yuan Chang, Zhong-Zheng Liu, Xiao-Gang Zhang, Chuan-Wen Zhu, Jing-Biao Chen. Cs 5$D_ {5/2}$–$6F$ 728nm Laser Spectroscopy with Single Pumping Laser[J]. Chin. Phys. Lett., 2017, 34(3): 024202
[10] Xiang-Ye Wei, Zhi-Wei Tu, Chang Liu, He-Long Li, Huai-Liang Xu. Differentiation of Positional Isomers of Propyl Alcohols Using Filament-Induced Fluorescence[J]. Chin. Phys. Lett., 2016, 33(05): 024202
[11] Wei Luo, Chuan-Xi Duan. A Broadband Pulsed External-Cavity Quantum Cascade Laser Operating near 6.9μm[J]. Chin. Phys. Lett., 2016, 33(02): 024202
[12] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 024202
[13] WANG Qing, DUAN Jun, QI Xiang-Hui, ZHANG Yin, CHEN Xu-Zong. Improvement of Laser Frequency Stabilization for the Optical Pumping Cesium Beam Standard[J]. Chin. Phys. Lett., 2015, 32(5): 024202
[14] WU Hua, LI Chong, HAN Min-Fu, WANG Wen-Juan, SHI Lei, LIU Qiao-Li, LIU Bai, DONG Jian, GUO Xia. Polarization-Stable 980 nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture[J]. Chin. Phys. Lett., 2015, 32(4): 024202
[15] LI Shi-Guo, GONG Qian, CAO Chun-Fang, WANG Xin-Zhong, YAN Jin-Yi, WANG Hai-Long. Junction-Temperature Measurement in InAs/InP(100) Quantum-Dot Lasers[J]. Chin. Phys. Lett., 2015, 32(01): 024202
Viewed
Full text


Abstract