Chin. Phys. Lett.  2018, Vol. 35 Issue (12): 125201    DOI: 10.1088/0256-307X/35/12/125201
Particle Growth in an Experimental Dusty Plasma System
Shou-Zhi Jiang1, Xue-Ni Hou1, Jie Kong2, Lorin S. Matthews2, Truell W. Hyde2, Feng Huang1,3**, Min-Juan Wang4
1College of Science, China Agricultural University, Beijing 100083
2Center for Astrophysics, Space Physics & Engineering Research, Baylor University, Waco, TX 76798-7310, USA
3Key Laboratory of Agricultural Informationization Standardization, Ministry of Agriculture, Beijing 100083
4College of Information and Electrical Engineering, China Agriculture University, Beijing 100083
Download: PDF(1102KB)   PDF(mobile)(1101KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The coagulation and growth process of dust particles is investigated through laboratory experiment in a plasma system. A large number of dust particles with different sizes and shapes are formed. The growth process is characterized by the scattering laser intensity and fractal dimension. The comparisons of dust particles and scattering laser intensity obtained at different rf powers are presented. The three-dimensional distribution of dust particles is also given. These results provide an experimental basis for dust growth investigation.
Received: 03 August 2018      Published: 23 November 2018
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11675261.
Cite this article:   
Shou-Zhi Jiang, Xue-Ni Hou, Jie Kong et al  2018 Chin. Phys. Lett. 35 125201
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Shou-Zhi Jiang
Xue-Ni Hou
Jie Kong
Lorin S. Matthews
Truell W. Hyde
Feng Huang
Min-Juan Wang
[1]Selwyn G S 1994 Plasma Sources Sci. Technol. 3 340
[2]Selwyn G S et al 1989 J. Vac. Sci. Technol. A 7 2758
[3]Olevanov M A et al 2004 J. Exp. Theor. Phys. 98 287
[4]Hayashi Y et al 1994 Jpn. J. Appl. Phys. 33 4208
[5]Matthews L S et al 2004 IEEE Trans. Plasma Sci. 32 586
[6]Kawasaki H et al 1998 J. Appl. Phys. 83 5665
[7]Watanabe Y et al 1996 J. Vac. Sci. Technol. A 14 540
[8]Praburam G et al 1996 Phys. Plasmas 3 1212
[9]Huang F et al 2012 Phys. Plasmas 19 093708
[10]Barkan A et al 1994 Phys. Rev. Lett. 73 3093
[11]Prabhakara H R et al 1996 Phys. Plasmas 3 3176
[12]Yoo W J et al 1993 J. Vac. Sci. Technol. A 11 1258
[13]Dahiya R P et al 2002 Phys. Rev. Lett. 89 125001
[14]Bouchoule A 1999 Dusty Plasmas, John wiley & Sons Canada Limited (New York: Academic) p 186–198
[15]Perry J D et al 2010 IEEE Trans. Plasma Sci. 38 792
[16]Hong S et al 2003 Plasma Sources Sci. Technol. 12 46
[17]Huang F Y et al 1996 J. Vac. Sci. Technol. A 14 562
[18]Hou X N et al 2016 Phys. Plasmas 23 093702
[19]Samsnov D et al 2003 New J. Phys. 5 24
Related articles from Frontiers Journals
[1] Rang-Yue Zhang, Yan-Hong Liu, Feng Huang, Zhao-Yang Chen, Chun-Yan Li. Effect of Particle Number Density on Wave Dispersion in a Two-Dimensional Yukawa System[J]. Chin. Phys. Lett., 2017, 34(7): 125201
[2] H. G. Abdelwahed, E. K. El-Shewy, A. A. Mahmoud. On the Time Fractional Modulation for Electron Acoustic Shock Waves[J]. Chin. Phys. Lett., 2017, 34(3): 125201
[3] You-Mei Wang, Qi Chen, Ming-Young Yu. Self-Organization of Charged Particulates in the Presence of External Force[J]. Chin. Phys. Lett., 2017, 34(3): 125201
[4] H. G. Abdelwahed, E. K. ElShewy, A. A. Mahmoud. On Time-Fractional Cylindrical Nonlinear Equation[J]. Chin. Phys. Lett., 2016, 33(11): 125201
[5] Jie Zhang, Xin Qi, Heng Zhang, Wen-Shan Duan. Particle-in-Cell Simulation of the Reflection of a Korteweg–de Vries Solitary Wave and an Envelope Solitary Wave at a Solid Boundary[J]. Chin. Phys. Lett., 2016, 33(06): 125201
[6] M. R. Hossen, S. A. Ema, A. A. Mamun. Nonlinear Dynamics in a Nonextensive Complex Plasma with Viscous Electron Fluids[J]. Chin. Phys. Lett., 2016, 33(06): 125201
[7] Zi-Juan Xie, Yu Sui, Yi Wang, Xian-Jie Wang, Yang Wang, Zhi-Guo Liu, Bing-Sheng Li, Yu Bai, Zhi-Hao Wang. Modulation of Void Motion Behavior in a Magnetized Dusty Plasma[J]. Chin. Phys. Lett., 2016, 33(01): 125201
[8] HUANG Feng, LIU Yan-Hong, CHEN Zhao-Yang, WANG Long, YE Mao-Fu. Cluster Rotation in an Unmagnetized Dusty Plasma[J]. Chin. Phys. Lett., 2013, 30(11): 125201
[9] Mehran Shahmansouri. Suprathermality Effects on Propagation Properties of Ion Acoustic Waves[J]. Chin. Phys. Lett., 2012, 29(10): 125201
[10] B. Farokhi, M. Eghbali. Effects of an Electric Field on the Cylindrical Dust Acoustic Wave in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2012, 29(7): 125201
[11] Hafeez Ur Rehman. Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 125201
[12] B. Farokhi, A. Hameditabar. Comparison of Dust Lattice Waves in Three-Dimensional Cubic Configurations[J]. Chin. Phys. Lett., 2012, 29(2): 125201
[13] WU Jing, **, ZHANG Peng-Yun, SUN Ji-Zhong, YAO Lie-Ming, DUAN Xu-Ru . Dust Particle Density and Charges in Radio-Frequency Mixture Discharge Plasma[J]. Chin. Phys. Lett., 2011, 28(9): 125201
[14] B. Farokhi, ** F. Amini, M. Eghbali . Dust Acoustic Rotation Modes in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2011, 28(7): 125201
[15] HUANG Feng**, LIU Yan-Hong, YE Mao-Fu, WANG Xue-Jin, WANG Long . Structures and Dynamics of Two-Dimensional Dust Lattices with and without Coulomb Molecules in Plasmas[J]. Chin. Phys. Lett., 2010, 27(11): 125201
Full text