Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 116301    DOI: 10.1088/0256-307X/35/11/116301
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Coherent Acoustic Phonon and Its Chirping in Dirac Semimetal Cd$_{3}$As$_{2}$
Fei Sun1,2†, M. Yang1,2†, M. W. Yang1,2, Q. Wu1,2, H. Zhao1,2, X. Ye1,2, Youguo Shi1,2, Jimin Zhao1,2**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Fei Sun, M. Yang, M. W. Yang et al  2018 Chin. Phys. Lett. 35 116301
Download: PDF(1553KB)   PDF(mobile)(1555KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ultrafast optical spectroscopy of a single crystal of a Dirac semimetal Cd$_{3}$As$_{2}$ is carried out. An acoustic phonon (AP) mode with central frequency $f=0.037$ THz (i.e., 1.23 cm$^{-1}$ or 0.153 meV) is unambiguously generated and detected, which we attribute to laser-induced thermal strain. An AP chirping (i.e., variation of the phonon frequency) is clearly detected, which is ascribed to heat capacity variation with time. By comparing our experimental results and the theoretical model, we obtain a chirping time constant, which is 31.2 ps at 6 K and 19.8 ps at 300 K, respectively. Significantly, we identify an asymmetry in the AP frequency domain peak and find that it is caused by the chirping, instead of a Fano resonance. Moreover, we experimentally demonstrate that the central frequency of AP is extremely stable with varying laser fluence, as well as temperature, which endows Cd$_{3}$As$_{2}$ application potentials in thermoelectric devices.
Received: 24 September 2018      Published: 23 October 2018
PACS:  63.20.-e (Phonons in crystal lattices)  
  78.47.D- (Time resolved spectroscopy (>1 psec))  
  78.47.-p (Spectroscopy of solid state dynamics)  
  71.55.Ak (Metals, semimetals, and alloys)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2017YFA0303603, 2016YFA0300303, 2017YFA0302901 and 2016YFA0300604, the National Natural Science Foundation of China under Grant Nos 11774408, 11574383 and 11774399, the External Cooperation Program of Chinese Academy of Sciences under Grant No GJHZ1826, and the Interdisciplinary Innovation Team of Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/116301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/116301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fei Sun
M. Yang
M. W. Yang
Q. Wu
H. Zhao
X. Ye
Youguo Shi
Jimin Zhao
[1]Wang Z J, Weng H M, Wu Q S et al 2013 Phys. Rev. B 88 125427
[2]Young S M, Zaheer S, Teo J C Y et al 2012 Phys. Rev. Lett. 108 140405
[3]Borisenko S, Gibson Q, Evtushinsky D et al 2014 Phys. Rev. Lett. 113 027603
[4]Yi H M, Wang Z J, Chen C Y et al 2015 Sci. Rep. 4 6106
[5]Feng J Y, Pang Y, Wu D S et al 2015 Phys. Rev. B 92 081306(R)
[6]He L P, Hong X C, Dong J K et al 2014 Phys. Rev. Lett. 113 246402
[7]Lv B Q, Weng H M, Fu B B et al 2015 Phys. Rev. X 5 031013
[8]Song Z D, Zhao J M, Fang Z et al 2016 Phys. Rev. B 94 214306
[9]Rinkel P, Lopes P L S and Carate I 2017 Phys. Rev. Lett. 119 107401
[10]Pikulin D I, Chen A and Franz M 2016 Phys. Rev. X 6 041021
[11]Cortijo A, Ferreirós Y, Landsteiner K et al 2015 Phys. Rev. Lett. 115 177202
[12]Sun F, Wu Q, Wu Y L et al 2017 Phys. Rev. B 95 235108
[13]Kumar N, Ruzicka B A, Butch N P et al 2011 Phys. Rev. B 83 235306
[14]Tian Y C, Zhang W H, Li F S et al 2016 Phys. Rev. Lett. 116 107001
[15]Ren Y H, Lupke C, Hu Y F et al 2006 Phys. Rev. B 74 012405
[16]Zhang X, Qiao X F, Shi W et al 2015 Chem. Soc. Rev. 44 2757
[17]Merlin R 1997 Solid State Commun. 102 207
[18]Li J J, Chen J, Reis D A et al 2013 Phys. Rev. Lett. 110 047401
[19]Sheu Y M, Chien Y J, Uher C et al 2013 Phys. Rev. B 87 075429
[20]Thomsen C, Grahn H T, Maris H J et al 1986 Phys. Rev. B 34 4129
[21]Liu Z H, Lu X X, Peng P et al 2010 Phys. Rev. B 82 155435
[22]Weszka J 1999 Phys. Stat. Sol. (b) 211 605
[23]Ge S F, Liu X F, Qiao X F et al 2014 Sci. Rep. 4 5722
[24]Zhao J M, Bragas A V, Lockwood D J et al 2004 Phys. Rev. Lett. 93 107203
[25]Bragas A V, Aku-Leh C, Costantino S et al 2004 Phys. Rev. B 69 205306
[26]Aku-Leh C, Zhao J, Merlin R et al 2005 Phys. Rev. B 71 205211
[27]Zhao J M, Bragas A V and Merlin R 2006 Phys. Rev. B 73 184434
[28]Zhao J M 2005 Ultrafast Optical Generation of Squeezed Magnon States and Long Lifetime Coherent LO Phonons (The University of Michigan: Phd Dissertation)
[29]Hao H Y and Maris H J 2000 Phys. Rev. Lett. 84 5556
[30]Hao H Y and Maris H J 2001 Phys. Rev. B 63 224301
[31]Poyser C L, York W B, Srikanthreddy D et al 2017 Phys. Rev. Lett. 119 255502
Related articles from Frontiers Journals
[1] Jie Ren. From Elastic Spin to Phonon Spin: Symmetry and Fundamental Relations[J]. Chin. Phys. Lett., 2022, 39(12): 116301
[2] Yupeng Liu, Jinchun Shi, and Chongyang Chen. Temperature-Dependent Far-Infrared Absorption in Cyclotrimethylene Trinitramine Single Crystals Using Broadband Time-Domain Terahertz Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(1): 116301
[3] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 116301
[4] Meng Li, Yuan Li, Chun-Yan Wang, Qiang Sun. Negative Thermal Expansion of GaFe(CN)$_{6}$ and Effect of Na Insertion by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(6): 116301
[5] Wen-Cheng Ji, Jun-Ren Shi. Topological Phonon Modes in a Two-Dimensional Wigner Crystal[J]. Chin. Phys. Lett., 2017, 34(3): 116301
[6] LIU Yue-Feng, WANG Bei, ZHENG Hai-Wu, LIU Xiang-Yang, GU Yu-Zong, ZHANG Wei-Feng. Temperature-Dependent Raman Spectrum of Hexagonal YMnO3 Films Synthesized by Chemical Solution Method[J]. Chin. Phys. Lett., 2010, 27(5): 116301
[7] TAN Da-Yong, XIAO Wan-Sheng, ZHOU Wen-Ge, SONG Mao-Shuang, XIONG Xiao-Lin, CHEN Ming. Raman Investigation of BaWO4-II Phase under Hydrostatic Pressures up to 14.8GPa[J]. Chin. Phys. Lett., 2009, 26(4): 116301
[8] FAN Hong-Yi, WANG Tong-Tong, HU Li-Yun. Normally Ordered Bivariate-Normal-Distribution Forms of Two-Mode Mixed States with Entanglement Involved[J]. Chin. Phys. Lett., 2008, 25(10): 116301
[9] FANG Nong-Yu, WU Fu-Gen, ZHANG Xin. Acoustic Band Gaps in Three-Dimensional NaCl-Type Acoustic Crystals[J]. Chin. Phys. Lett., 2008, 25(8): 116301
[10] LIU Zheng-Bo, DONG Shun-Le, WANG Lin. Lattice Dynamical Simulation of Guest-Host Interaction in N2 Clathrate Hydrate[J]. Chin. Phys. Lett., 2008, 25(7): 116301
[11] Aditya M. Vora. Modified Transition Temperature Equation for Superconductors[J]. Chin. Phys. Lett., 2008, 25(6): 116301
[12] Aditya M. Vora. Phonon Dispersion in Equiatomic Li-Based Binary Alloys[J]. Chin. Phys. Lett., 2008, 25(2): 116301
[13] PAN Xin-Yu, WANG Shu-Feng, HUANG Wen-Tao, YANG Hong, LI Xia, JIANG Hong-Bing, GONG Qi-Huang. Coherent Phonon Detection in Ge with a Femtosecond Laser [J]. Chin. Phys. Lett., 2001, 18(7): 116301
[14] YANG Ai-Ling, WU Hui-Zhen, LI Zhi-Feng, QIU Dong-Jiang, CHANG Yong, LI Jian-Feng, P. J. McCann, X. M. Fang. Raman Scattering Study of PbSe Grown on (111) BaF2 Substrate[J]. Chin. Phys. Lett., 2000, 17(8): 116301
[15] ZHANG Yong-hong, HUANG Shi-ping. Molecular Dynamics Simulation Study of MgO Crystal[J]. Chin. Phys. Lett., 1999, 16(4): 116301
Viewed
Full text


Abstract