Chin. Phys. Lett.  2018, Vol. 35 Issue (10): 108101    DOI: 10.1088/0256-307X/35/10/108101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
An Immersed Boundary-Lattice Boltzmann Prediction for Particle Hydrodynamic Focusing in Annular Microchannels
Tao HU1, Meng-Dan HU2, Si-si Zhou3, Dong-Ke SUN1**
1School of Mechanical Engineering, Southeast University, Nanjing 211189
2School of Materials Science and Engineering, Southeast University, Nanjing 211189
3School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189
Cite this article:   
Tao HU, Meng-Dan HU, Si-si Zhou et al  2018 Chin. Phys. Lett. 35 108101
Download: PDF(1560KB)   PDF(mobile)(1560KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We numerically study the dynamics of particle crystals in annular microchannels by the immersed-boundary (IB) lattice Boltzmann (LB) coupled model, analyze the fluid-particle interactions during the migration of particles, and reveal the underlying mechanism of a particle focusing on the presence of fluid flows. The results show that the Reynolds and Dean numbers are key factors influencing the hydrodynamics of particles. The particles migrate onto their equilibrium tracks by adjusting the Reynolds and Dean numbers. Elliptical tracks of particles during hydrodynamic focusing can be predicted by the IB-LB model. Both the small Dean number and the small particle can lead to a small size of the focusing track. This work would possibly facilitate the utilization of annular microchannel flows to obtain microfluidic flowing crystals for advanced applications in biomedicine and materials synthesis.
Received: 11 June 2018      Published: 15 September 2018
PACS:  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.30.Fb (Solidification)  
  47.11.-j (Computational methods in fluid dynamics)  
  47.54.-r (Pattern selection; pattern formation)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51728601 and 51771118, and the Natural Science Foundation of Jiangsu Province under Grant No BK20150600.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/10/108101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I10/108101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tao HU
Meng-Dan HU
Si-si Zhou
Dong-Ke SUN
[1]Di Carlo D, Irimia D, Tompkins R G and Toner M 2007 Proc. Natl. Acad. Sci. USA 104 18892
[2]Raven J P and Marmottant P 2009 Phys. Rev. Lett. 102 084501
[3]Pamme N 2007 Lab Chip 7 1644
[4]Lee W, Amini H, Stone H A and Di Carlo D 2010 Proc. Natl. Acad. Sci. USA 107 22413
[5]Sun J F, Dong J, Sun D K, Guo Z R and Gu N 2012 Langmuir 28 6520
[6]Schmidle H, Jäger S, Hall C K, Velev O D and Klapp S H L 2013 Soft Matter 9 2518
[7]Chun B and Ladd T 2006 Phys. Fluids 18 136
[8]Sun D K, Jiang D, Xiang N, Chen K and Ni Z H 2013 Chin. Phys. Lett. 30 074702
[9]Kulkarni P M and Morris J F 2008 Phys. Fluids 20 545
[10]Qi D W, He G W and Liu Y M 2013 Phys. Fluids 25 093302
[11]Gossett D R and Di Carlo D 2009 Anal. Chem. 81 8459
[12]Peskin C S 2002 Acta Numer. 11 479
[13]Skalak R, Tozeren A, Zarda R and Chien S 1973 Biophys. J. 13 245
[14]Shrivastava S and Tang J 1993 J. Strain Anal. 28 31
[15]Sui Y, Chew Y T, Roy P and Low H T 2008 J. Comput. Phys. 227 6351
[16]Krüger T 2011 PhD Dissertation (Germany: Ruhr-Universität Bochum)
[17]Seifert U 1997 Adv. Phys. 46 13
[18]Sun D K and Bo Z 2015 Int. J. Heat Mass Transfer 80 139
[19]Sun D K, Wang Y, Dong A P and Sun B D 2016 Int. J. Heat Mass Transfer 94 306
[20]Wong K L and Baker A J 2002 Int. J. Numer. Methods Fluids 38 99
Related articles from Frontiers Journals
[1] Lu Li, Zhi-Long Bao, Xun-Heng Ye, Jia-Wei Shen, Bo Yang, Gao-Xiang Ye, Xiang-Ming Tao. Nucleation, Growth, and Aggregation of Au Nanocrystals on Liquid Surfaces[J]. Chin. Phys. Lett., 2020, 37(2): 108101
[2] Tong Zhou, Xie-Gang Zhu, Mingyu Tong, Yun Zhang, Xue-Bing Luo, Xiangnan Xie, Wei Feng, Qiuyun Chen, Shiyong Tan, Zhen-Yu Wang, Tian Jiang, Yuhua Tang, Xin-Chun Lai, Xuejun Yang. Experimental Evidence of Topological Surface States in Mg$_{3}$Bi$_{2}$ Films Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2019, 36(11): 108101
[3] Ying Zhao, Sheng-Rui Xu, Zhi-Yu Lin, Jin-Cheng Zhang, Teng Jiang, Meng-Di Fu, Jia-Duo Zhu, Qin Lu, Yue Hao. C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(12): 108101
[4] Na Yan, Liang Hu, Ying Ruan, Wei-Li Wang, Bing-Bo Wei. Liquid State Undercoolability and Crystal Growth Kinetics of Ternary Ni-Cu-Sn Alloys[J]. Chin. Phys. Lett., 2016, 33(10): 108101
[5] Sheng-Rui Xu, Ying Zhao, Teng Jiang, Jin-Cheng Zhang, Pei-Xian Li, Yue Hao. Improved Semipolar (11$\bar{2}$2) GaN Quality Grown on $m$-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN$_{x}$ Interlayer[J]. Chin. Phys. Lett., 2016, 33(06): 108101
[6] JIANG Ren-Yuan, XU Sheng-Rui, ZHANG Jin-Cheng, JIANG Teng, JIANG Hai-Qing, WANG Zhi-Zhe, FAN Yong-Xiang, HAO Yue. Morphological and Microstructural Evolution and Related Impurity Incorporation in Non-Polar a-Plane GaN Grown on r-Sapphire Substrates[J]. Chin. Phys. Lett., 2015, 32(09): 108101
[7] SUN Dong-Ke, ZHANG Qing-Yu, CAO Wei-Sheng, ZHU Ming-Fang. Simulation of Dendritic Growth with Melt Convection in Solidification of Ternary Alloys[J]. Chin. Phys. Lett., 2015, 32(06): 108101
[8] LIU Bin, SUN Guo-Sheng, LIU Xing-Fang, ZHANG Feng, DONG Lin, ZHENG Liu, YAN Guo-Guo, LIU Sheng-Bei, ZHAO Wan-Shun, WANG Lei, ZENG Yi-Ping, LI Xi-Guang, WANG Zhan-Guo, YANG Fei. Fast Homoepitaxial Growth of 4H-SiC Films on 4° off-Axis Substrates in a SiH4-C2H4-H2 System[J]. Chin. Phys. Lett., 2013, 30(12): 108101
[9] JI Xiao-Rui, YANG Xiao-Hong. Removing Impurity of cBN Crystal Prepared at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 108101
[10] LI Zhe-Yang, **, HAN Ping, LI Yun, NI Wei-Jiang, BAO Hui-Qiang, LI Yu-Zhu . Epitaxial Growth of 4H-SiC on 4° Off-Axis Substrate for Power Devices[J]. Chin. Phys. Lett., 2011, 28(9): 108101
[11] LU Yun-Bin, LIAO Shu-Zhi**, PENG Hao-Jun, ZHANG Chun, ZHOU Hui-Ying, XIE Hao-Wen, OUYANG Yi-Fang, ZHANG Bang-Wei, . Size Model of Critical Temperature for Grain Growth in Nano V and Au[J]. Chin. Phys. Lett., 2011, 28(8): 108101
[12] GAO Zhao-Shun, ZHANG Xian-Ping, WANG Dong-Liang, QI Yan-Peng, WANG Lei, CHENG Jun-Sheng, WANG Qiu-Liang, MA Yan-Wei**, AWAJI Satoshi, WATANABE Kazuo . Fabrication and Properties of Aligned Sr0.6K0.4Fe2As2 Superconductors by High Magnetic Field Processing[J]. Chin. Phys. Lett., 2011, 28(6): 108101
[13] LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, SU Tai-Chao, XIAO Hong-Yu, HUANG Guo-Feng, LI Yong, ZHANG Yi-Shun, JIA Xiao-Peng, ** . Reaction Mechanism of Al and N in Diamond Growth from a FeNiCo-C System[J]. Chin. Phys. Lett., 2011, 28(6): 108101
[14] GUO Xiao-Song, BAO Zhong, ZHANG Shan-Shan, XIE Er-Qing** . A Novel Model of the H Radical in Hot-Filament Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(2): 108101
[15] HOU Zhao-Yang, LIU Li-Xia, LIU Rang-Su, TIAN Ze-An. Tracing Nucleation and Growth on Atomic Level in Amorphous Sodium by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(3): 108101
Viewed
Full text


Abstract