Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 017401    DOI: 10.1088/0256-307X/35/1/017401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy
Xuan Sun1,2, Wen-Tao Zhang1, Lin Zhao1, Guo-Dong Liu1, Gen-Da Gu3, Qin-Jun Peng4, Zhi-Min Wang4, Shen-Jin Zhang4, Feng Yang4, Chuang-Tian Chen4, Zu-Yan Xu4, Xing-Jiang Zhou1,2,5**
1National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
4Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
5Collaborative Innovation Center of Quantum Matter, Beijing 100871
Download: PDF(1483KB)   PDF(mobile)(1470KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We carry out detailed momentum-dependent and temperature-dependent measurements on Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi2212) superconductor in the superconducting and pseudogap states by super-high resolution laser-based angle-resolved photoemission spectroscopy. The precise determination of the superconducting gap for the nearly optimally doped Bi2212 ($T_{\rm c}=91$ K) at low temperature indicates that the momentum-dependence of the superconducting gap deviates from the standard $d$-wave form ($\cos(2{\it \Phi}$)). It can be alternatively fitted by including a high-order term ($\cos(6{\it \Phi}$)) in which the next nearest-neighbor interaction is considered. We find that the band structure near the antinodal region smoothly evolves across the pseudogap temperature without a signature of band reorganization which is distinct from that found in Bi$_2$Sr$_2$CuO$_{6+\delta}$ superconductors. This indicates that the band reorganization across the pseudogap temperature is not a universal behavior in cuprate superconductors. These results provide new insights in understanding the nature of the superconducting gap and pseudogap in high-temperature cuprate superconductors.
Received: 20 November 2017      Published: 17 December 2017
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.72.-h (Cuprate superconductors)  
  79.60.-i (Photoemission and photoelectron spectra)  
  74.72.Kf (Pseudogap regime)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300300, the National Natural Science Foundation of China under Grant No 11334010, the National Basic Research Program of China under Grant No 2015CB921300, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB07020300.
Cite this article:   
Xuan Sun, Wen-Tao Zhang, Lin Zhao et al  2018 Chin. Phys. Lett. 35 017401
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/017401       OR      http://cpl.iphy.ac.cn/Y2018/V35/I1/017401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xuan Sun
Wen-Tao Zhang
Lin Zhao
Guo-Dong Liu
Gen-Da Gu
Qin-Jun Peng
Zhi-Min Wang
Shen-Jin Zhang
Feng Yang
Chuang-Tian Chen
Zu-Yan Xu
Xing-Jiang Zhou
[1]Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969
[2]Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
[3]Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[4]Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[5]Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[6]Shen Z X, Dessau D S, Wells B O et al 1993 Phys. Rev. Lett. 70 1553
[7]Ding H, Norman M R, Campuzano J C et al 1996 Phys. Rev. B 54 R9678
[8]Vishik I M, Hashimoto M, He R H et al 2012 Proc. Natl. Acad. Sci. USA 109 18332
[9]Hashimoto M, Vishik I M, He R H et al 2014 Nat. Phys. 10 483
[10]Marshall D S, Dessau D S, Loeser A G et al 1996 Phys. Rev. Lett. 76 4841
[11]Loeser A G, Shen Z X, Dessau D S et al 1996 Science 273 325
[12]Ding H, Yokoya T, Campuzano J C et al 1996 Nature 381 51
[13]Hashimoto M, He R H, Tanaka K et al 2010 Nat. Phys. 6 414
[14]He R H, Hashimoto M, Karapetyan H et al 2011 Science 331 1579
[15]Liu G D, Wang G L, Zhu Y et al 2008 Rev. Sci. Instrum. 79 023105
[16]Bansil A and Lindroos M 1999 Phys. Rev. Lett. 83 5154
[17]Feng D L, Armitage N P, Lu D H et al 2001 Phys. Rev. Lett. 86 5550
[18]Bogdanov P V, Lanzara A, Zhou X J et al 2001 Phys. Rev. B 64 180505
[19]Norman M R, Randeria M, Ding H and Campuzano J C 1998 Phys. Rev. B 57 R11093
[20]Mesot J, Norman M R, Ding H et al 1999 Phys. Rev. Lett. 83 840
[21]Tanaka K, Lee W S, Lu D H et al 2006 Science 314 1910
Related articles from Frontiers Journals
[1] Chen-Lu Wang, Yan Zhang, Jian-Wei Huang, Guo-Dong Liu, Ai-Ji Liang, Yu-Xiao Zhang, Bing Shen, Jing Liu, Cheng Hu, Ying Ding, De-Fa Liu, Yong Hu, Shao-Long He, Lin Zhao, Li Yu, Jin Hu, Jiang Wei, Zhi-Qiang Mao, You-Guo Shi, Xiao-Wen Jia, Feng-Feng Zhang, Shen-Jin Zhang, Feng Yang, Zhi-Min Wang, Qin-Jun Peng, Zu-Yan Xu , Chuang-Tian Chen, Xing-Jiang Zhou. Evidence of Electron-Hole Imbalance in WTe$_2$ from High-Resolution Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2017, 34(9): 017401
[2] Pai Xiang, Ji-Shan Liu, Ming-Ying Li, Hai-Feng Yang, Zheng-Tai Liu, Cong-Cong Fan, Da-Wei Shen , Zhen Wang, Zhi Liu. In Situ Electronic Structure Study of Epitaxial Niobium Thin Films by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2017, 34(7): 017401
[3] Jun Ma, Bin-Bin Fu, Jun-Zhang Ma, Ling-Yuan Kong, Di Chen, Ji-Feng Shao, Chang-Jin Zhang, Tian Qian, Yu-Heng Zhang, Hong Ding. Experimental Investigation of Electronic Structure of La(O,F)BiSe$_{2}$[J]. Chin. Phys. Lett., 2016, 33(12): 017401
[4] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 017401
[5] De-Fa Liu, Lin Zhao, Shao-Long He, Yong Hu, Bing Shen, Jian-Wei Huang, Ai-Ji Liang, Yu Xu, Xu Liu, Jun-Feng He, Dai-Xiang Mou, Shan-Yu Liu, Hai-Yun Liu, Guo-Dong Liu, Wen-Hao Zhang, Fang-Sen Li, Xu-Cun Ma, Qi-Kun Xue, Xian-Hui Chen, Gen-Fu Chen, Li Yu, Jun Zhang, Zu-Yan Xu, Chuang-Tian Chen, Xing-Jiang Zhou. Common Electronic Features and Electronic Nematicity in Parent Compounds of Iron-Based Superconductors and FeSe/SrTiO$_3$ Films Revealed by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(07): 017401
[6] LIANG Yi, WU Xian-Xin, HU Jiang-Ping. Electronic Structure Properties in the Nematic Phases of FeSe[J]. Chin. Phys. Lett., 2015, 32(11): 017401
[7] XU Di-Fei, DU Yong-Ping, WANG Zhen, LI Yu-Peng, NIU Xiao-Hai, YAO Qi, Dudin Pavel, XU Zhu-An, WAN Xian-Gang, FENG Dong-Lai. Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP[J]. Chin. Phys. Lett., 2015, 32(10): 017401
[8] KONG Wan-Dong, MIAO Hu, QIAN Tian, WANG Zhi-Jun, XU Gang, FANG Ai-Fang, HUANG Yao-Bo, ZHANG Peng, SHI Xun, FANG Zhong, DAI Xi, RICHARD Pierre, WANG Nan-Lin, DING Hong. Surface State Bands in Superconducting (PtxIr1−x)Te2[J]. Chin. Phys. Lett., 2015, 32(07): 017401
[9] LIU Yan, ZHAO Jian-Zhou, YU Li, LIN Cheng-Tian, LIANG Ai-Ji, HU Cheng, DING Ying, XU Yu, HE Shao-Long, ZHAO Lin, LIU Guo-Dong, DONG Xiao-Li, ZHANG Jun, CHEN Chuang-Tian, XU Zu-Yan, WENG Hong-Ming, DAI Xi, FANG Zhong, ZHOU Xing-Jiang. Identification of Topological Surface State in PdTe2 Superconductor by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2015, 32(06): 017401
[10] XU Min, WANG Li-Min, PENG Rui, GE Qing-Qin, CHEN Fei, YE Zi-Rong, ZHANG Yan, CHEN Su-Di, XIA Miao, LIU Rong-Hua, Arita M., Shimada K., Namatame H., Taniguchi M., Matsunami M., Kimura S., SHI Ming, CHEN Xian-Hui, YIN Wei-Guo, KU Wei, XIE Bin-Ping, FENG Dong-Lai. Electronic Structure Reconstruction across the Antiferromagnetic Transition in TaFe1.23Te3 Spin Ladder[J]. Chin. Phys. Lett., 2015, 32(02): 017401
[11] SHI Ying-Bo, HUANG Yao-Bo, WANG Xiao-Ping, SHI Xun, ROEKEGHEM A-Van, ZHANG Wei-Lu, XU Na, RICHARD Pierre, QIAN Tian, RIENKS Emile, THIRUPATHAIAH S, ZHAO Kan, JIN Chang-Qing, SHI Ming, DING Hong. Observation of Strong-Coupling Pairing with Weakened Fermi-Surface Nesting at Optimal Hole Doping in Ca0.33Na0.67Fe2As2[J]. Chin. Phys. Lett., 2014, 31(06): 017401
[12] WANG Fang-Fang, WEI Peng-Yue, DING Xue-Yong, XING Xian-Ran, CHEN Xing-Qiu. Towards a Mechanism Underlying the Stability of the Tetragonal CuO Phase: Comparison with NiO and CoO by Hybrid Density Functional Calculation[J]. Chin. Phys. Lett., 2014, 31(2): 017401
[13] LIU Xu, LIU De-Fa, ZHAO Lin, GUO Qi, MU Qing-Ge, CHEN Dong-Yun, SHEN Bing, YI He-Mian, HUANG Jian-Wei, HE Jun-Feng, PENG Ying-Ying, LIU Yan, HE Shao-Long, LIU Guo-Dong, DONG Xiao-Li, ZHANG Jun, CHEN Chuang-Tian, XU Zu-Yan, REN Zhi-An, ZHOU Xing-Jiang. Fermi Surface and Band Structure of (Ca,La)FeAs2 Superconductor from Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2013, 30(12): 017401
[14] PENG Ying-Ying, MENG Jian-Qiao, ZHAO Lin, LIU Yan, HE Jun-Feng, LIU Guo-Dong, DONG Xiao-Li, HE Shao-Long, ZHANG Jun, CHEN Chuang-Tian, XU Zu-Yan, ZHOU Xing-Jiang . Doping Evolution of Nodal Band Renormalization in Bi2Sr2CuO6 Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2013, 30(6): 017401
[15] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 017401
Viewed
Full text


Abstract