Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 014301    DOI: 10.1088/0256-307X/35/1/014301
Lorentz Force Electrical Impedance Detection Using Step Frequency Technique
Zhi-Shen Sun1,2,3, Guo-Qiang Liu1,2**, Hui Xia1
1Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Univ Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, INSERM, LabTAU UMR1032, LYON F-69003, France
Cite this article:   
Zhi-Shen Sun, Guo-Qiang Liu, Hui Xia 2018 Chin. Phys. Lett. 35 014301
Download: PDF(520KB)   PDF(mobile)(523KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Lorentz force electrical impedance tomography (LFEIT) inherits the merit of high resolution by ultrasound stimulation and the merit of high contrast through electromagnetic field detection. To reduce the instantaneous peak power of the stimulating signal to the transducer, the sinusoidal pulse and step-frequency technique is investigated in LFEIT. The theory of application of step-frequency technique in LFEIT is formulated with the direct demodulation method and the in-phase quadrature demodulation method. Compared with the in-phase quadrature demodulation method, the direct demodulation method has simple experimental setup but could only detect half of the range. Experiments carried out with copper foils confirmed that LFEIT using the step-frequency technique could detect the electrical conductivity variations precisely, which suggests an alternative method of realization of LFEIT.
Received: 29 August 2017      Published: 17 December 2017
PACS:  43.80.+p (Bioacoustics)  
  72.55.+s (Magnetoacoustic effects)  
  73.50.Rb (Acoustoelectric and magnetoacoustic effects)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51137004 and 61427806, the Scientific Instrument and Equipment Development Project of Chinese Academy of Sciences under Grant No YZ201507, and the China Scholarship Council Program under Grant No 201604910849.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Zhi-Shen Sun
Guo-Qiang Liu
Hui Xia
[1]Wen H, Shah J and Balaban R S 1998 IEEE Trans. Biomed. Eng. 45 119
[2]Montalibet A, Jossinet J and Matias A 2001 Ultrason. Imaging 23 117
[3]Grasland-Mongrain P, Mari J M, Chapelon J Y and Lafon C 2013 IRBM 34 357
[4]Gabriel C, Gabriel S and Courhout E 1996 Phys. Med. Biol. 41 2231
[5]Haemmerich D, Staelin S T, Tsai J Z, Tungjitkusolmun S, Mahvi D M and Webster J G 2003 Physiol. Meas. 24 251
[6]Sun Z, Liu G, Xia H and Catheline S 2017 IEEE Trans. Ultrason. Ferroelect. Freq. Control. (accepted)
[7]Sun Z, Liu G and Xia H 2017 Chin. Phys. B 26 124302
[8]Iizuka K, Ogura H, Yen J L, Nguyen V K and Weedmark J R 1976 Proc. IEEE 64 1493
[9]Iizuka K and Freundorfer A P 1983 Proc. IEEE 71 276
[10]Iizuka K, Freundorfer A P, Wu K H, Mori H, Ogura H and Nguyen N K 1984 J. Appl. Phys. 56 2572
[11]Oyan M J, Hamran S K, Hanssen L, Berger T and Plettemeier D 2012 IEEE Trans. Geosci. Remote Sens. 50 212
[12]Nan H and Arbabian A 2014 Appl. Phys. Lett. 104 224104
[13]Aliroteh M S, Scott G and Arbabian A 2014 Electron. Lett. 50 790
[14]Natarajan S, Singh R S, Lee M, Cox B P, Culjat M O, Grundfest W S and Lee H 2010 Proc. SPIE 7629 76290D
[15]Podilchuk C, Bajor M, Stoddart W, Barinov L, Hulbert W, Jairaj A and Mammone R 2013 IEEE Signal Processing in Medicine and Biology Symposium 1
Related articles from Frontiers Journals
[1] Wen-Hua Wu, Peng-Fei Yang, Wei Zhai, Bing-Bo Wei. Oscillation and Migration of Bubbles within Ultrasonic Field[J]. Chin. Phys. Lett., 2019, 36(8): 014301
[2] Hong-Hui Xue, Feng Shan, Xia-Sheng Guo, Juan Tu, Dong Zhang. Cavitation Bubble Collapse near a Curved Wall by the Multiple-Relaxation-Time Shan–Chen Lattice Boltzmann Model[J]. Chin. Phys. Lett., 2017, 34(8): 014301
[3] Zhe-Fan Peng, Wei-Jun Lin, Shi-Lei Liu, Chang Su, Hai-Lan Zhang, Xiu-Ming Wang. Phase Relation of Harmonics in Nonlinear Focused Ultrasound[J]. Chin. Phys. Lett., 2016, 33(08): 014301
[4] Ting-Bo Fan, Juan Tu, Lin-Jiao Luo, Xia-Sheng Guo, Pin-Tong Huang, Dong Zhang. The Relationship of Cavitation to the Negative Acoustic Pressure Amplitude in Ultrasonic Therapy[J]. Chin. Phys. Lett., 2016, 33(08): 014301
[5] CAO Hui, HUANG Wan-Jun, QIAO Jia-Ting, WANG Yun-Peng, ZHAO Hai-Jun. Research on Vibration Mechanism of Plant Cell Membrane with Ultrasonic Irradiation[J]. Chin. Phys. Lett., 2015, 32(03): 014301
[6] YANG Di-Wu, ZHOU Zhi-Bin, ZENG Lv-Ming, ZHOU Xin, CHEN Xing-Hui. Photoacoustic Imaging of Animals with an Annular Transducer Array[J]. Chin. Phys. Lett., 2014, 31(07): 014301
[7] LI Wen-Chao, YUAN Jie, SHEN Qing-Hong, YU Yao, ZHOU Yu, DU Si-Dan, LIU Xiao-Jun, XU Guan, WANG Xue-Ding. Novel Image Optimization Method for Joint Photoacoustic Tomography[J]. Chin. Phys. Lett., 2014, 31(05): 014301
[8] YU Jie, CHEN Chu-Yi, CHEN Gong, GUO Xia-Sheng, MA Yong, TU Juan, ZHANG Dong. Real-Time Monitoring and Quantitative Evaluation of Cavitation Bubbles Induced by High Intensity Focused Ultrasound Using B-Mode Imaging[J]. Chin. Phys. Lett., 2014, 31(03): 014301
[9] HUANG Lin, RONG Jian, YAO Lei, QI Wei-Zhi, WU Dan, XU Jin-Yu, JIANG Hua-Bei. Quantitative Thermoacoustic Tomography for ex vivo Imaging Conductivity of Breast Tissue[J]. Chin. Phys. Lett., 2013, 30(12): 014301
[10] CHEN Tao, QIU Yuan-Yuan, FAN Ting-Bo, ZHANG Dong . Modeling of Shock Wave Generated from a Strong Focused Ultrasound Transducer[J]. Chin. Phys. Lett., 2013, 30(7): 014301
[11] ZHANG Zhe, CHEN Tao, ZHANG Dong. Lesions in Porcine Liver Tissues Created by Continuous High Intensity Ultrasound Exposures in Vitro[J]. Chin. Phys. Lett., 2013, 30(2): 014301
[12] YANG Di-Wu, ZENG Lv-Ming, JI Xuan-Rong, HUANG Zhong, CHEN Xing-Hui, TAN Zhi. Fast Photoacoustic Imaging of Blood Vessels Based on an Annular Transducer Array[J]. Chin. Phys. Lett., 2012, 29(10): 014301
[13] YU Li-Li**, SHOU Wen-De, HUI Chun** . Theoretical Calculation of a Focused Acoustic Field from a Linear Phased Array on a Concave Cylindrical Transducer[J]. Chin. Phys. Lett., 2011, 28(10): 014301
[14] QIU Yuan-Yuan, ZHENG Hai-Rong, ZHANG Dong** . Hysteretic Nonlinearity of Sub-harmonic Emission from Ultrasound Contrast Agent Microbubbles[J]. Chin. Phys. Lett., 2011, 28(4): 014301
[15] LIU Zhen-Bo, FAN Ting-Bo, GUO Xia-Sheng, ZHANG Dong. Effect of Tissue Inhomogeneity on Nonlinear Propagation of Focused Ultrasound[J]. Chin. Phys. Lett., 2010, 27(9): 014301
Full text