Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 097303    DOI: 10.1088/0256-307X/34/9/097303
Fano Resonance Effect in CO-Adsorbed Zigzag Graphene Nanoribbons
Gao Wang1, Meng-Qiu Long2**, Dan Zhang2,3
1Advanced Research Center, Central South University, Changsha 410083
2Institute of Super Microstructure and Ultrafast Process, Central South University, Changsha 410083
3School of Science, Hunan University of Technology, Zhuzhou 412007
Download: PDF(1140KB)   PDF(mobile)(1134KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non-equilibrium Green's Function method in combination with density functional theory, we investigate the influence to the transport property of a CO molecule adsorbed on one edge of a zigzag graphene nanoribbon device. Our results show that the CO molecule-adsorbed zigzag graphene nanoribbon devices can exhibit the Fano resonance phenomenon. Moreover, the distance between CO molecules and zigzag graphene nanoribbons is closely related to the energy sites of the Fano resonance. Our theoretical analyses indicate that the Fano resonance would be attributed to the interaction between CO molecules and the edge of the zigzag graphene nanoribbon device, which results in the localization of electrons and significantly changes the transmission spectrum.
Received: 05 June 2017      Published: 15 August 2017
PACS:  73.20.Fz (Weak or Anderson localization)  
  73.22.Pr (Electronic structure of graphene)  
  73.50.Bk (General theory, scattering mechanisms)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 21673296, the Science and technology Plan of Hunan Province under Grant No 2015RS4002, and the Hunan Provincial Natural Science Foundation under Grant No 2017JJ3063.
Cite this article:   
Gao Wang, Meng-Qiu Long, Dan Zhang 2017 Chin. Phys. Lett. 34 097303
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Gao Wang
Meng-Qiu Long
Dan Zhang
[1]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[3]Geim A K 2009 Science 324 1530
[4]Castro A H, Guinea F, Peres N M R K, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[5]Sarma S D, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[6]Zhang D, Long M Q, Zhang X J, Ouyang F P, Li M J and Xu H 2015 J. Appl. Phys. 117 014311
[7]Liu J, Zhang Z H, Deng X Q, Fan Z Q and Tang G P 2015 Org. Electron. 18 135
[8]Ouyang J, Long M Q, Zhang X J, Zhang D, He J and Gao Y L 2016 AIP Adv. 6 035116
[9]Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[10]Wang Z F, Jin S and Liu F 2013 Phys. Rev. Lett. 111 096803
[11]Ihnatsenka S and Kirczenow G 2013 Phys. Rev. B 88 125430
[12]Tang G P, Zhang Z H, Deng X Q, Fan Z Q and Zhu H L 2015 Phys. Chem. Chem. Phys. 17 638
[13]Zhang X J, Chen K Q, Tang L M and Long M Q 2011 Phys. Lett. A 375 3319
[14]Zeng M G, Shen L, Zhou M, Zhang C and Feng Y P 2011 Phys. Rev. B 83 115427
[15]Cao C, Chen L N, Long M Q, Huang W R and Xu H 2012 J. Appl. Phys. 111 113708
[16]Zou Y, Long M Q, Li M J, Zhang X J, Zhang Q T and Xu H 2015 RSC Adv. 5 19152
[17]Lehmann T, Ryndyk D A and Cuniberti G 2013 Phys. Rev. B 88 125420
[18]Zeng J, Chen L Z and Chen K Q 2014 Org. Electron. 15 1012
[19]Zhang D, Long M Q, Zhang X J, Cui L L, Li X M and Xu H 2017 J. Appl. Phys. 121 093903
[20]Orellana P A, Dominguez-Adame F, Gómez I and de Guevara M L L 2003 Phys. Rev. B 67 085321
[21]Hong K and Kim A W Y 2013 Chem. Int. Ed. 52 3389
[22]Papadopoulos T A, Grace I M and Lambert C J 2006 Phys. Rev. B 74 193306
[23]Li T C and Lu S P 2008 Phys. Rev. B 77 085408
[24]Ding G H and Dong B 2010 J. Phys.: Condens. Matter 22 135301
[25]Xu J G, Wang L and Weng M Q 2013 J. Appl. Phys. 114 153701
[26]Jaskólski W, Ayuela A, Pelc M, Santos H and Chico L 2011 Phys. Rev. B 83 235424
[27]Cervantes-Sodi F, Csányi G, Piscanec S and Ferrari A C 2008 Phys. Rev. B 77 165427
[28]Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[29]Brandbyge M, Mozos J, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[30]Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
Related articles from Frontiers Journals
[1] Qin Wang, Peng Yu, Xiangwei Huang, Jie Fan, Xiunian Jing, Zhongqing Ji, Zheng Liu, Guangtong Liu, Changli Yang, Li Lu. Observation of Weak Anti-Localization and Electron-Electron Interaction on Few-Layer 1T$'$-MoTe$_2$ Thin Films[J]. Chin. Phys. Lett., 2018, 35(7): 097303
[2] Bo-Ya Miao, Yu An. Localization in an Acoustic Cavitation Cloud[J]. Chin. Phys. Lett., 2017, 34(3): 097303
[3] NI Jia-Ting, LIANG Xiao-Wan, CHEN Bin, T. Koga,. Spin Interference in Rectangle Loop Based on Rashba and Dresselhaus Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2009, 26(12): 097303
[4] CHEN Li-Jun, WANG De-Yong, ZHAN Qing-Feng, HE Wei, LI Qing-An. Magnetoresistance Probe of Ultrathin Mn5Ge3 Films with Anderson Weak Localization[J]. Chin. Phys. Lett., 2008, 25(7): 097303
[5] LI Guohong, WANG Min, LIU Guoliang, LIU Sangtian, WANG Shiguang, YAN Shousheng. Dependence of Weak Localization Magnetoconductivity on Flux Line Structure[J]. Chin. Phys. Lett., 1995, 12(10): 097303
[6] LI Guohong, WANG Min, CHEN Mingling, LIU Guoliang, LIU Sangtian, WANG Shiguang, YAN Shousheng . High Temperature Limit of Weak Localization in Thin Silver Films[J]. Chin. Phys. Lett., 1994, 11(11): 097303
[7] WANG Xiaoping, ZHAO Texiu, WANG Shunxi*, JI Hang, LIANG Qi. Electrical Properties of Periodic Pd/Mo Bimetal Films[J]. Chin. Phys. Lett., 1994, 11(5): 097303
Full text