Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 097301    DOI: 10.1088/0256-307X/34/9/097301
Characterization of Interface State Density of Ni/p-GaN Structures by Capacitance/Conductance-Voltage-Frequency Measurements
Zhi-Fu Zhu1,2,3, He-Qiu Zhang4**, Hong-Wei Liang4, Xin-Cun Peng2, Ji-Jun Zou2**, Bin Tang2, Guo-Tong Du1,4,5
1School of Physics, Dalian University of Technology, Dalian 116024
2Engineering Research Center of Nuclear Technology Application (Ministry of Education), East China Institute of Technology, Nanchang 330013
3Jiangxi Province Engineering Research Center of New Energy Technology and Equipment (Ministry of Education), East China Institute of Technology, Nanchang 330013
4School of Microelectronics, Dalian University of Technology, Dalian 116024
5State Key Laboratory on Integrated Optoelectronics, School of Electronic Science and Engineering, Jilin University, Changchun 130012
Download: PDF(703KB)   PDF(mobile)(698KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For the frequency range of 1 kHz–10 MHz, the interface state density of Ni contacts on p-GaN is studied using capacitance-voltage ($C$–$V$) and conductance-frequency-voltage ($G$–$f$–$V$) measurements at room temperature. To obtain the real capacitance and interface state density of the Ni/p-GaN structures, the effects of the series resistance ($R_{\rm s}$) on high-frequency (5 MHz) capacitance values measured at a reverse and a forward bias are investigated. The mean interface state densities obtained from the $C_{\rm HF}$–$C_{\rm LF}$ capacitance and the conductance method are $2\times10^{12}$ eV$^{-1}$cm$^{-2}$ and $0.94\times10^{12}$ eV$^{-1}$cm$^{-2}$, respectively. Furthermore, the interface state density derived from the conductance method is higher than that reported from the Ni/n-GaN in the literature, which is ascribed to a poor crystal quality and to a large defect density of the Mg-doped p-GaN.
Received: 24 April 2017      Published: 15 August 2017
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.40.-c (Electronic transport in interface structures)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Supported by the Natural Science Foundation of Jiangxi Province under Grant No 20133ACB20005, the Key Program of National Natural Science Foundation of China under Grant No 41330318, the Key Program of Science and Technology Research of Ministry of Education under Grant No NRE1515, the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province under Grant No 20142BCB22006, the Research Foundation of Education Bureau of Jiangxi Province under Grant No GJJ14501, and the Engineering Research Center of Nuclear Technology Application (East China Institute of Technology) Ministry of Education under Grant No HJSJYB2016-1.
Cite this article:   
Zhi-Fu Zhu, He-Qiu Zhang, Hong-Wei Liang et al  2017 Chin. Phys. Lett. 34 097301
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Zhi-Fu Zhu
He-Qiu Zhang
Hong-Wei Liang
Xin-Cun Peng
Ji-Jun Zou
Bin Tang
Guo-Tong Du
[1]Hirayama H et al 2007 Appl. Phys. Lett. 91 071901
[2]Asif Khan M et al 1994 Appl. Phys. Lett. 65 1121
[3]Nakamura S et al 1994 Appl. Phys. Lett. 64 1687
[4]Khan M A et al 1992 Appl. Phys. Lett. 60 2917
[5]Shur M S 1998 Solid-State Electron. 42 2131
[6]Sharma B L 1984 Metal-Semiconductor Schottky Barrier Junctions and Their Applications (New York: Springer)
[7]Lin Y J 2005 Appl. Phys. Lett. 86 122109
[8]Nagaraju G et al 2015 Appl. Phys. A 121 131
[9]Park Y et al 2012 Jpn. J. Appl. Phys. 51 09MK01
[10]Rickert K A, Ellis A B, Kim J K et al 2002 J. Appl. Phys. 92 6671
[11]Siva Pratap Reddy M, Bengi A, Rajagopal Reddy V et al 2015 Superlattices Microstruct. 86 157
[12]Stafford L, Voss L F, Pearton S J et al 2006 Appl. Phys. Lett. 89 10
[13]Voss L F, Stafford L, Thaler G T et al 2007 J. Electron. Mater. 36 384
[14]Yu L S, Qiao D, Jia L et al 2001 Appl. Phys. Lett. 79 4536
[15]Choi Y Y, Kim S, Oh M et al 2015 Superlattices Microstruct. 77 76
[16]Nguyen N D, Germain M, Schmeits M et al 2001 J. Appl. Phys. 90 985
[17]Cowley A M 1966 J. Appl. Phys. 37 3024
[18]Terman L M 1962 Solid-State Electron. 5 285
[19]Kar S and Dahlke W E 1972 Solid-State Electron. 15 221
[20]Castagne R and vapaille A 1971 Surf. Sci. 28 157
[21]Yu L S, Jia L, Qiao D et al 2003 IEEE Trans. Electron Devices 50 292
[22]Shiojima K, Sugahara T and Sakai S 1999 Appl. Phys. Lett. 74 1936
[23]Berglund C N 1966 IEEE Trans. Electron Devices 13 701
[24]Sze S M and Kwok K 2006 Physics of Semiconductor Devices (Hoboken NJ: Wiley)
[25]Turut A, Doğan H and Yıldırım N 2015 Mater. Res. Express 2 096304
[26]Nicollian E H and Brews J R 1982 Metal Oxide Semiconductor Physics and Technology (New York: Wiley)
[27]Qian F, Kai D, Yu K L et al 2013 Chin. Phys. Lett. 30 127302
[28]Demirezen S Ã 2010 Physica B 405 1130
[29]Doǧan H, Yildirim N, Orak I et al 2015 Physica B 457 48
[30]Zhao M and Liu X Y 2015 Chin. Phys. Lett. 32 048501
Related articles from Frontiers Journals
[1] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 097301
[2] Gaoyuan Jiang, Yang Feng, Weixiong Wu, Shaorui Li, Yunhe Bai, Yaoxin Li, Qinghua Zhang, Lin Gu, Xiao Feng, Ding Zhang, Canli Song, Lili Wang, Wei Li, Xu-Cun Ma, Qi-Kun Xue, Yayu Wang, Ke He. Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2018, 35(7): 097301
[3] Sailong Ju, Maokun Wu, Hao Yang, Naizhou Wang, Yingying Zhang, Peng Wu, Pengdong Wang, Bo Zhang, Kejun Mu, Yaoyi Li, Dandan Guan, Dong Qian, Feng Lu, Dayong Liu, Wei-Hua Wang, Xianhui Chen, Zhe Sun. Band Structures of Ultrathin Bi(110) Films on Black Phosphorus Substrates Using Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(7): 097301
[4] Bin-Xu, Jing-Ping Xu, Lu Liu, Yong Su. Improvements of Interfacial and Electrical Properties for Ge MOS Capacitor with LaTaON Gate Dielectric by Optimizing Ta Content[J]. Chin. Phys. Lett., 2018, 35(7): 097301
[5] Hui-Xiong Deng, Zhi-Gang Song, Shu-Shen Li, Su-Huai Wei, Jun-Wei Luo. Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and $Z_{2}$ Topological Insulator[J]. Chin. Phys. Lett., 2018, 35(5): 097301
[6] Chong Liu, Haohao Yang, Can-Li Song, Wei Li, Ke He, Xu-Cun Ma, Lili Wang, Qi-Kun Xue. Observation of Tunneling Gap in Epitaxial Ultrathin Films of Pyrite-Type Copper Disulfide[J]. Chin. Phys. Lett., 2018, 35(2): 097301
[7] Kun Zhao, Hai-Cheng Lin, Wan-Tong Huang, Xiao-Peng Hu, Xi Chen, Qi-Kun Xue, Shuai-Hua Ji. Molecular Beam Epitaxy Growth of Tetragonal FeS Films on SrTiO$_{3}$(001) Substrates[J]. Chin. Phys. Lett., 2017, 34(8): 097301
[8] Jing Shi, Yong Gao, Xiao-Li Wang, Si-Ning Yun. Electronic, Elastic and Piezoelectric Properties of Two-Dimensional Group-IV Buckled Monolayers[J]. Chin. Phys. Lett., 2017, 34(8): 097301
[9] Jian-Peng Sun. Topological Nodal Line Semimetal in Non-Centrosymmetric PbTaS$_2$[J]. Chin. Phys. Lett., 2017, 34(7): 097301
[10] Jin-Lian Lu, Wei Luo, Xue-Yang Li, Sheng-Qi Yang, Jue-Xian Cao, Xin-Gao Gong, Hong-Jun Xiang. Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice[J]. Chin. Phys. Lett., 2017, 34(5): 097301
[11] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 097301
[12] Yu-Feng An, Zhen-Hong Dai, Yin-Chang Zhao, Chao Lian, Zhao-Qing Liu. Band Gap Adjustment of SiC Honeycomb Structure through Hydrogenation and Fluorination[J]. Chin. Phys. Lett., 2017, 34(1): 097301
[13] Hua-Ling Yu, Zhang-Yin Zhai, Xin-Tian Bian. Integer Quantum Hall Effect in a Two-Orbital Square Lattice with Chern Number $C=2$[J]. Chin. Phys. Lett., 2016, 33(11): 097301
[14] Yong-Hong Gu, Qing Feng, Jian-Jun Chen, Yan-Hua Li, Cong-Zhong Cai. Adsorption Regularity and Characteristics of $sp^{3}$-Hybridized Gas Molecules on Anatase TiO$_{2}$ (101) Surface[J]. Chin. Phys. Lett., 2016, 33(07): 097301
[15] Zhen Yao, Jia-Yin Lv, Chun-Jian Liu, Hang Lv, Bing-Bing Liu. Preferable Orientations of Interacting C$_{60}$ Molecules inside Single Wall Boron Nitride Nanotubes[J]. Chin. Phys. Lett., 2016, 33(05): 097301
Full text