Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 094201    DOI: 10.1088/0256-307X/34/9/094201
High-Order-Harmonic Generation from a Relativistic Circularly Polarized Laser Interacting with Over-Dense Plasma Grating
Xia-Zhi Li1, Hong-Bin Zhuo1,2,3**, De-Bin Zou1**, Shi-Jie Zhang1, Hong-Yu Zhou1, Na Zhao1, Yue Lang1, De-Yao Yu1
1College of Science, National University of Defense Technology, Changsha 410073
2IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240
3Institute of Applied Physics and Computational Mathematics, Beijing 100094
Download: PDF(769KB)   PDF(mobile)(765KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The simple surface current model is extended to study the generation of high-order harmonics for a relativistic circularly polarized laser pulse interacting with a plasma grating surface. Both exact relativistic electron dynamics and optical interference of surface periodic structure are considered. It is found that high order harmonics in the specular direction are obviously suppressed whereas the harmonics of the grating periodicity are strongly enhanced and folded into small solid angles with respect to the surface direction. The conversion efficiency of certain harmonics is five orders of magnitude higher than that of the planar target cases. It provides an effective approach to generate a coherent radiation within the so-called 'water window' while maintaining high conversion efficiency and narrow angle spread.
Received: 24 May 2017      Published: 15 August 2017
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.79.Dj (Gratings)  
  28.52.Av (Theory, design, and computerized simulation)  
  28.52.-s (Fusion reactors)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11375265, 11475259 and 11675264, the National Basic Research Program of China under Grant No 2013CBA01504, and the Science Challenge Project under Grant No JCKY2016212A505.
Cite this article:   
Xia-Zhi Li, Hong-Bin Zhuo, De-Bin Zou et al  2017 Chin. Phys. Lett. 34 094201
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Xia-Zhi Li
Hong-Bin Zhuo
De-Bin Zou
Shi-Jie Zhang
Hong-Yu Zhou
Na Zhao
Yue Lang
De-Yao Yu
[1]Ganeev R A, Suzuki M, Baba M and Kuroda H 2009 Appl. Phys. Lett. 94 051101
[2]Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[3]Cavalieri A L, Müller N, Uphues T et al 2007 Nature 449 1029
[4]Laovorakiat C, Siemens M, Murnane M M et al 2009 Phys. Rev. Lett. 103 257402
[5]Brau C A 1988 Science 239 1115
[6]Andreev N E, Kuznetsov S V, Pogosova A A et al 2003 Phys. Rev. ST Accel. Beams 6 041301
[7]Burza M, Gonoskov A, Svensson K et al 2013 Phys. Rev. ST Accel. Beams 16 011301
[8]Hentschel M, Kienberger R and Spielmann C 2001 Nature 414 509
[9]Kienberger R, Goulielmakis E, Uiberacker M et al 2004 Nature 427 817
[10]Zhang J, Du H, Pan X F et al 2016 Chin. Phys. B 25 113201
[11]Yi L X, Feng L H, Shen L X et al 2016 Acta Phys. Sin. 65 123201 (in Chinese)
[12]Shen L X, Yi L X, Qun W et al 2015 Acta Phys. Sin. 64 193201 (in Chinese)
[13]Bulanov S V, Naumova N M and Pegoraro F 1994 Phys. Plasmas 1 745
[14]Lichters R, Meyer-Ter-Vehn J and Pukhov A 1996 Phys. Plasmas 3 3425
[15]Naumova N M, Nees J A, Sokolov I V et al 2004 Phys. Rev. Lett. 92 063902
[16]Geissler M, Rykovanov S, Schreiber J et al 2007 New J. Phys. 9 218
[17]Mikhailova Y M, Platonenko V T and Rykovanov S G 2005 JETP Lett. 81 571
[18]Baeva T, Gordienko S and Pukhov A 2006 Phys. Rev. E 74 046404
[19]Yu W, Yu M Y, Zhang J and Xu Z 1998 Phys. Rev. E 57 R2531
[20]Brownell J H, Walsh J and Doucas G 1998 Phys. Rev. E 57 1075
[21]Liu C S, Tripathi V K, Shao X and Liu T C 2015 Phys. Plasmas 22 023105
[22]Tatjana B and Violeta M 2015 J. Russ. Laser Res. 36 31
[23]Liang Q T 2012 Advanced Physical Optics (Beijing: Electronics Industry)
[24]Zhang S J, Zhuo H B, Zou D B et al 2016 Phys. Rev. E 93 053206
[25]Gibbon P 1996 Phys. Rev. Lett. 76 50
[26]Dromey B, Kar S, Zepf M and Foster P 2004 Rev. Sci. Instrum. 75 645
[27]Ceccotti T, Floquet V, Sgattoni A et al 2013 Phys. Rev. Lett. 111 185001
Related articles from Frontiers Journals
[1] Bin Zhang, Jian Zhao, Zeng-Xiu Zhao. Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules[J]. Chin. Phys. Lett., 2018, 35(4): 094201
[2] Tian-Run Feng, Hui-Zhen Kang, Lei Feng, Jia Yang, Tian-Hao Zhang, Feng Song, Jing-Jun Xu, Jian-Guo Tian, L. I. Ivleva. Noncolinear Second-Harmonic Generation Pairs and Their Scatterings in Nd$^{3+}$:SBN Crystals with Needle-Like Ferroelectric Domains[J]. Chin. Phys. Lett., 2018, 35(3): 094201
[3] Yang-Yang Liu, Kun Zhao, Peng He, Hang-Dong Huang, Hao Teng, Zhi-Yi Wei. High-Efficiency Generation of 0.12mJ, 8.6Fs Pulses at 400nm Based on Spectral Broadening in Solid Thin Plates[J]. Chin. Phys. Lett., 2017, 34(7): 094201
[4] Ting-Rui Huang, Xue Pan, Peng Zhang, Jiang-Feng Wang, Xiao-Ping Ouyang, Xue-Chun Li. High-Stability High-Energy Picosecond Optical Parametric Chirped Pulse Amplifier as a Preamplifier in Nd:Glass Petawatt System for Contrast Enhancement[J]. Chin. Phys. Lett., 2017, 34(6): 094201
[5] M. Salehi, S. Mirzanejad. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma[J]. Chin. Phys. Lett., 2017, 34(5): 094201
[6] Chang Xu, Shi-Bo Dai, Chuan Guo, Qi Bian, Jun-Wei Zuo, Yuan-Qin Xia, Hong-Wei Gao, Zhi-Min Wang, Yong Bo, Nan Zong, Sheng Zhang, Qin-Jun Peng, Zu-Yan Xu. A High-Pulse-Energy High-Beam-Quality Tunable Ti:Sapphire Laser Using a Prism-Dispersion Cavity[J]. Chin. Phys. Lett., 2017, 34(3): 094201
[7] Hong-Dan Zhang, Jing Guo, Yan Shi, Hui Du, Hai-Feng Liu, Xu-Ri Huang, Xue-Shen Liu, Jun Jing. Exploration of High-Harmonic Generation from the CS$_2$ Molecule by the Lewenstein Method in Two-Color Circularly Polarized Laser Field[J]. Chin. Phys. Lett., 2017, 34(1): 094201
[8] Jin-Jer Huang, Lin Su, Shao-Zhi Pu, Shang-Ao Sun, Liu-Yang Zhang. Design of an Ultrafast Frequency Doubling Photonic Device[J]. Chin. Phys. Lett., 2016, 33(10): 094201
[9] Bonghoon Kang, Sung-Tae Hwang. Investigations for the Surface of the Oxide Semiconductor Changes by Reduction[J]. Chin. Phys. Lett., 2016, 33(05): 094201
[10] CAI Xiang-Long, ZHOU Can-Hua, ZHOU Dong-Jian, LIU Jin-Bo, GUO Jing-Wei, GUI Lin. H2 Stimulated Raman Scattering in a Multi-pass Cell with a Herriott Configuration[J]. Chin. Phys. Lett., 2015, 32(11): 094201
[11] ZOU Hong-Xin, WU Yue, CHEN Guo-Zhu, SHEN Yong, LIU Qu. Generation of Continuous-Wave 194 nm Laser for Mercury Ion Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(5): 094201
[12] XIA Chang-Long, MIAO Xiang-Yang. Generation of Linear Isolated Sub-60 Attosecond Pulses by Combining a Circularly Polarized Pulse with an Elliptically Polarized Pulse[J]. Chin. Phys. Lett., 2015, 32(4): 094201
[13] LIU Jia-Xing, WANG Zhao-Hua, TIAN Wen-Long, WANG Qing, ZHANG Zhi-Guo, WEI Zhi-Yi, YU Hao-Hai, ZHANG Huai-Jin, WANG Ji-Yang. Observation of Self-Frequency Doubling in Diode-Pumped Mode-Locked Nd-Doped La3Ga5SiO14 Laser[J]. Chin. Phys. Lett., 2015, 32(01): 094201
[14] LI Fei, WANG Guo-Li, ZHAO Song-Feng, ZHOU Xiao-Xin. Synthesis of Multi-Color Long Laser Pulses for Strong Attosecond Pulse Generation[J]. Chin. Phys. Lett., 2015, 32(01): 094201
[15] DU Hai-Wei, YANG Nan. Theoretical Investigation on THz Generation from Optical Rectification with Tilted-Pulse-Front Excitation[J]. Chin. Phys. Lett., 2014, 31(12): 094201
Full text