Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 090701    DOI: 10.1088/0256-307X/34/9/090701
Terahertz Direct Detectors Based on Superconducting Hot Electron Bolometers with Microwave Biasing
Shou-Lu Jiang1, Xian-Feng Li1, Run-Feng Su1, Xiao-Qing Jia1,2, Xue-Cou Tu1, Lin Kang1,2, Biao-Bing Jin1, Wei-Wei Xu1,2, Jian Chen1**, Pei-Heng Wu1,2
1Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023
2Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Download: PDF(623KB)   PDF(mobile)(621KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and to readout the impedance changes caused by the incident THz signals. Compared with the thermal biasing method, this method would be more promising in large scale array with simple readout. The used NbN HEB has an excellent performance as heterodyne detector with the double sideband noise temperature ($T_{\rm N}$) of 403 K working at 4.2 K and 0.65 THz. As a result, the noise equivalent power of 1.5 pW/Hz$^{1/2 }$ and the response time of 64 ps are obtained for the direct detectors based on the NbN HEBs and working at 4.2 K and 0.65 THz.
Received: 12 June 2017      Published: 15 August 2017
PACS:  07.57.Kp (Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)  
  85.25.Pb (Superconducting infrared, submillimeter and millimeter wave detectors)  
  85.25.Pb (Superconducting infrared, submillimeter and millimeter wave detectors)  
  95.85.Fm (Submillimeter (300 μm-1 mm))  
Fund: Supported by the National Basic Research Program of China under Grant No 2014CB339800, the National Natural Science Foundation of China under Grant Nos 61521001, 11173015 and 11227904, the Fundamental Research Funds for the Central Universities, and the Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves of Jiangsu Province.
Cite this article:   
Shou-Lu Jiang, Xian-Feng Li, Run-Feng Su et al  2017 Chin. Phys. Lett. 34 090701
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Shou-Lu Jiang
Xian-Feng Li
Run-Feng Su
Xiao-Qing Jia
Xue-Cou Tu
Lin Kang
Biao-Bing Jin
Wei-Wei Xu
Jian Chen
Pei-Heng Wu
[1]Meledin D V, Marrone D P, Tong C Y E et al 2004 IEEE Trans. Microwave Theory Tech. 52 2338
[2]Meledin D, Pavolotsky A, Desmaris V et al 2009 IEEE Trans. Microwave Theory Tech. 57 89
[3]Putz P, Honingh C E, Jacobs K et al 2012 Astron. Astrophys. 542 L2
[4]Liang M, Chen J, Kang L et al 2010 IEICE Trans. Electron. E93-C 473
[5]Buchel D, Putz P, Jacobs K et al 2015 IEEE Trans. Terahertz Sci. Technol. 5 207
[6]Kroug M, Cherednichenko S, Merkel H et al 2001 IEEE Trans. Appl. Supercond. 11 962
[7]Lobanov Y, Tong C E, Hedden A et al 2010 Proc. 21st Int. Symp. Space THz Tech. pp 420–423
[8]Lee A T, Richards P L, Nam S W et al 1996 Appl. Phys. Lett. 69 1801
[9]Mazin B A, Day P K, Irwin K D et al 2006 Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 559 799
[10]Chen J, Jiang Y, Liang M et al 2011 IEEE Trans. Appl. Supercond. 21 667
[11]Jiang Y, Jin B B, Xu W W et al 2012 Sci. Chin. Inf. Sci. 55 64
[12]Jiang S L, Li X F, Jia X Q et al 2017 Supercond. Sci. Technol. 30 044004
[13]Jiang Y, Liang M, Jin B B et al 2012 Chin. Sci. Bull. 57 573
[14]Li C, Zhang C H, Hu G L et al 2016 Appl. Phys. Lett. 109 022601
Related articles from Frontiers Journals
[1] GU Min, KANG Lin, ZHANG La-Bao, ZHAO Qing-Yuan, JIA Tao, WAN Chao, XU Rui-Ying, YANG Xiao-Zhong, WU Pei-Heng. A High-Efficiency Broadband Superconducting Nanowire Single-Photon Detector with a Composite Optical Structure[J]. Chin. Phys. Lett., 2015, 32(03): 090701
[2] WANG Qi, ZHU Xiao-Feng, YUAN Xiao-Wen, CHEN Chang-Qing, LUO Xiang-Dong, ZHANG Bo. Sub-Wavelength Near-Field Metal Detection using an On-Chip Spintronic Technique[J]. Chin. Phys. Lett., 2013, 30(12): 090701
[3] WU Jian-Xiong, CHENG Teng, ZHANG Qing-Chuan, ZHANG Yong, MAO Liang, GAO Jie, CHEN Da-Peng, WU Xiao-Ping. Research of Infrared Imaging at Atmospheric Pressure Using a Substrate-Free Focal Plane Array[J]. Chin. Phys. Lett., 2013, 30(1): 090701
[4] REN Yuan, MIAO Wei, YAO Qi-Jun, ZHANG Wen, SHI Sheng-Cai** . Terahertz Direct Detection Characteristics of a Superconducting NbN Bolometer[J]. Chin. Phys. Lett., 2011, 28(1): 090701
[5] DONG Feng-Liang, ZHANG Qing-Chuan, CHEN Da-Peng, MIAO Zheng-Yu, XIONG Zhi-Ming, GUO Zhe-Ying, LI Chao-Bo, JIAO Bin-Bin, WU Xiao-Ping. Optimized Optomechanical Micro-Cantilever Array for Uncooled Infrared Imaging[J]. Chin. Phys. Lett., 2007, 24(12): 090701
[6] DUAN Zhi-Hui, ZHANG Qing-Chuan, WU Xiao-Ping, PAN Liang, CHEN Da-Peng, WANG Wei-Bing, GUO Zhe-Ying. Uncooled Optically Readable Bimaterial Micro-Cantilever Infrared Imaging Device[J]. Chin. Phys. Lett., 2003, 20(12): 090701
Full text