Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 090602    DOI: 10.1088/0256-307X/34/9/090602
Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth
Zhao-Yang Tai1,2, Lu-Lu Yan1,2, Yan-Yan Zhang1,2, Xiao-Fei Zhang1,2, Wen-Ge Guo1, Shou-Gang Zhang1,2, Hai-Feng Jiang1,2**
1Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600
2School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049
Download: PDF(805KB)   PDF(mobile)(796KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit ($7\times10^{-16})$ of the 10-cm ultra-low expansion glass cavity at 1–10 s averaging time and the beat signal of the two lasers reveals a remarkable linewidth of 185 mHz.
Received: 15 June 2017      Published: 15 August 2017
PACS:  06.30.Ft (Time and frequency)  
  42.60.By (Design of specific laser systems)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 91536217, the West Light Foundation of the Chinese Academy of Sciences under Grant No 2013ZD02, and the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No 2015334.
Cite this article:   
Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang et al  2017 Chin. Phys. Lett. 34 090602
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Zhao-Yang Tai
Lu-Lu Yan
Yan-Yan Zhang
Xiao-Fei Zhang
Wen-Ge Guo
Shou-Gang Zhang
Hai-Feng Jiang
[1]Jiang Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S and Oates C W 2011 Nat. Photon. 5 158
[2]Abbott B P et al 2016 Phys. Rev. Lett. 116 061102
[3]Marshall W, Simon C, Penrose R and Bouwmeester D 2003 Phys. Rev. Lett. 91 130401
[4]Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates C W and Diddams S A 2011 Nat. Photon. 5 425
[5]Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L and Ye J 2012 Nat. Photon. 6 687
[6]Argence B, Prevost E, Lévèque T, Le R, Bize S, Lemonde P and Santarelli G 2012 Opt. Express 20 25409
[7]Wu L, Jiang Y, Ma C, Qi W, Yu H, Bi Z and Ma L 2016 Sci. Rep. 6 24969
[8]Jiang H, Kéfélian F, Crane S, Lopez O, Lours M, Millo J, Holleville D et al 2008 J. Opt. Soc. Am. B 25 2029
[9]Predehl K, Grosche G, Raupach S M F, Droste S, Terra O, Alnis J, Legero T et al 2012 Science 336 441
[10]Xie X, Bouchand R, Nicolodi D, Giunta M, Hänsel W, Lezius M, Joshi A, Datta S, Alexandre C, Lours M, Tremblin P A, Santarelli G, Holzwarth R and Le Y 2016 Nat. Photon. 11 44
[11]Santarelli G, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619
[12]Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guena J, Clairon A, Tobar M E, Bize S, Le Y and Santarelli G 2009 Appl. Phys. Lett. 94 141105
[13]Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S and Ye J 2007 Opt. Lett. 32 641
[14]Häfner S, Falke S, Grebing C, Vogt S, Legero T, Merimaa M, Lisdat C and Sterr U 2015 Opt. Lett. 40 2112
[15]Amairi S, Legero T, Kessler T, Sterr U, Wübbena J B, Mandel O and Schmidt P O 2013 Appl. Phys. B 113 233
[16]Legero T, Kessler T and Sterr U 2010 J. Opt. Soc. Am. B 27 914
[17]Numata K, Kemery A and Camp J 2004 Phys. Rev. Lett. 93 250602
[18]Braginsky V B, Gorodetsky M L and Vyatchanin S P 1999 Phys. Lett. A 264 1
[19]Braginsky V B and Vyatchanin S P 2003 Phys. Lett. A 312 244
[20]Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
[21]Anderson D Z, Frisch J C and Masser C S 1984 Appl. Opt. 23 1238
[22]Donley E A, Heavner T P, Levi F, Tataw M O and Jefferts S R 2005 Rev. Sci. Instrum. 76 063112
[23]Tai Z, Yan L, Zhang Y, Zhang X, Guo W, Zhang S and Jiang H 2016 Opt. Lett. 41 5584
[24]Ma L S, Jungner P, Ye J and Hall J L 1994 Opt. Lett. 19 1777
[25]Dawkins S T, McFerran J J and Luiten A N 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 918
Related articles from Frontiers Journals
[1] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 090602
[2] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 090602
[3] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 090602
[4] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 090602
[5] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 090602
[6] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 090602
[7] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 090602
[8] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 090602
[9] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 090602
[10] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 090602
[11] WANG Qing, DUAN Jun, QI Xiang-Hui, ZHANG Yin, CHEN Xu-Zong. Improvement of Laser Frequency Stabilization for the Optical Pumping Cesium Beam Standard[J]. Chin. Phys. Lett., 2015, 32(5): 090602
[12] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 090602
[13] LIU Zhong-Zheng, XUE Xiao-Bo, NIU Fu-Zeng, ZHANG Li-Guo, LING Li, CHEN Jing-Biao. Laser 728 nm Spectroscopy of Electrodeless Discharge Rb Lamp[J]. Chin. Phys. Lett., 2014, 31(12): 090602
[14] LIU Zhong-Zheng, TAO Zhi-Ming, JIANG Zhao-Jie, CHEN Jing-Biao. Cs 728 nm Laser Spectroscopy and Faraday Atomic Filter[J]. Chin. Phys. Lett., 2014, 31(12): 090602
[15] FANG Fang, LIU Kun, CHEN Wei-Liang, LIU Nian-Feng, SUO Rui, LI Tian-Chun. Accurate Evaluation of Microwave-Leakage-Induced Frequency Shifts in Fountain Clocks[J]. Chin. Phys. Lett., 2014, 31(10): 090602
Full text