Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 090302    DOI: 10.1088/0256-307X/34/9/090302
Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab
Sheng-Kai Liao1,2†, Jin Lin1,2†, Ji-Gang Ren1,2, Wei-Yue Liu1,2, Jia Qiang3, Juan Yin1,2, Yang Li1,2, Qi Shen1,2, Liang Zhang2,3, Xue-Feng Liang4, Hai-Lin Yong1,2, Feng-Zhi Li1,2, Ya-Yun Yin1,2, Yuan Cao1,2, Wen-Qi Cai1,2, Wen-Zhuo Zhang1,2, Jian-Jun Jia3, Jin-Cai Wu3, Xiao-Wen Chen3, Shan-Cong Zhang4, Xiao-Jun Jiang5, Jian-Feng Wang5, Yong-Mei Huang6, Qiang Wang6, Lu Ma7, Li Li1,2, Ge-Sheng Pan1,2, Qiang Zhang1,2, Yu-Ao Chen1,2, Chao-Yang Lu1,2, Nai-Le Liu1,2, Xiongfeng Ma2, Rong Shu2,3, Cheng-Zhi Peng1,2**, Jian-Yu Wang2,3**, Jian-Wei Pan1,2**
1Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026
2Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Shanghai 201315
3Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083
4Beijing UCAS Space Technology Co., Ltd, Beijing 100190
5National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012
6Key Laboratory of Optical engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209
7Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011
Download: PDF(1192KB)   PDF(mobile)(1197KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum technology establishes a foundation for secure communication via quantum key distribution (QKD). In the last two decades, the rapid development of QKD makes a global quantum communication network feasible. In order to construct this network, it is economical to consider small-sized and low-cost QKD payloads, which can be assembled on satellites with different sizes, such as space stations. Here we report an experimental demonstration of space-to-ground QKD using a small-sized payload, from Tiangong-2 space lab to Nanshan ground station. The 57.9-kg payload integrates a tracking system, a QKD transmitter along with modules for synchronization, and a laser communication transmitter. In the space lab, a 50 MHz vacuum + weak decoy-state optical source is sent through a reflective telescope with an aperture of 200 mm. On the ground station, a telescope with an aperture of 1200 mm collects the signal photons. A stable and high-transmittance communication channel is set up with a high-precision bidirectional tracking system, a polarization compensation module, and a synchronization system. When the quantum link is successfully established, we obtain a key rate over 100 bps with a communication distance up to 719 km. Together with our recent development of QKD in daylight, the present demonstration paves the way towards a practical satellite-constellation-based global quantum secure network with small-sized QKD payloads.
Received: 08 August 2017      Published: 10 August 2017
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Supported by China Manned Space Program, Technology and Engineering Center for Space Utilization Chinese Academy of Sciences, Chinese Academy of Sciences, and the National Natural Science Foundation of China.
Cite this article:   
Sheng-Kai Liao, Jin Lin, Ji-Gang Ren et al  2017 Chin. Phys. Lett. 34 090302
URL:       OR
[1]Vernam G S 1926 Trans. Am. Inst. Electr. Eng. XLV 295
[2]Shannon C E 1949 Bell Labs Tech. J. 28 656
[3]Bennett C H and Brassard G 1984 Conf. on Computers, Systems and Signal Processing (Bangalore India December 1984) 175
[4]Bennett C H and Brassard G 1989 SIGACT News 20 78
[5]Buttler W T, Hughes R J, Kwiat P G, Lamoreaux S K, Luther G G, Morgan G L, Nordholt J E, Peterson C G and Simmons C M 1998 Phys. Rev. Lett. 81 3283
[6]Hughes R J, Nordholt J E, Derkacs D and Peterson C G 2002 New J. Phys. 4 43
[7]Schmitt-Manderbach T, Weier H, Fürst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kurtsiefer C, Rarity J G, Zeilinger A and Weinfurter H 2007 Phys. Rev. Lett. 98 010504
[8]Wang J Y, Yang B, Liao S K, Zhang Li, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y Hand Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z and Pan J W 2013 Nat. Photon. 7 387
[9]Peng C Z, Zhang J, Yang D, Gao W B, Ma H X, Yin H, Zeng H P, Yang T, Wang X B and Pan J W 2007 Phys. Rev. Lett. 98 010505
[10]Liu Y, Chen T Y, Wang J, Cai W Q, Wan X, Chen L K, Wang J H, Liu S B, Liang H, Yang Li, Peng C Z, Chen K, Chen Z B and Pan J W 2010 Opt. Express 18 8587
[11]Korzh B, Lim C C W, Houlmann R, Gisin N, Li M J, Nolan D, Sanguinetti B, Thew R and Zbinden H 2015 Nat. Photon. 9 163
[12]Shibata H, Honjo T and Shimizu K 2014 Opt. Lett. 39 5078
[13]Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y Q, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B and Pan J W 2016 Phys. Rev. Lett. 117 190501
[14]Peev M, Pacher C, Alléaume R, Barreiro C, Bouda J, Boxleitner W, Debuisschert T, Diamanti E, Dianati M, Dynes J F, Fasel S, Fossier S, Fürst M, Gautier J D, Gay O, Gisin N, Grangier P, Happe A, Hasani Y, Hentschel M, Hübel H, Humer G, Länger T, Legré M, Lieger R, Lodewyck J, Lorünser T, Lütkenhaus N, Marhold A, Matyus T, Maurhart O, Monat L, Nauerth S, Page J B, Poppe A, Querasser E, Ribordy G, Robyr S, Salvail L, Sharpe A W, Shields A J, Stucki D, Suda M, Tamas C, Themel T, Thew R T, Thoma Y, Treiber A, Trinkler P, Tualle-Brouri R, Vannel F, Walenta N, Weier H, Weinfurter H, Wimberger I, Yuan Z L, Zbinden H and Zeilinger A 2009 New J. Phys. 11 075001
[15]Sasaki M, Fujiwara M, Ishizuka H, Klaus W, Wakui K, Takeoka M, Miki S, Yamashita T, Wang Z, Tanaka A, Yoshino K, Nambu Y, Takahashi S, Tajima A, Tomita A, Domeki T, Hasegawa T, Sakai Y, Kobayashi H, Asai T, Shimizu K, Tokura T, Tsurumaru T, Matsui M, Honjo T, Tamaki K, Takesue H, Tokura Y, Dynes J F, Dixon A R, Sharpe A W, Yuan Z L, Shields A J, Uchikoga S, Legré M, Robyr S, Trinkler P, Monat L, Page J B, Ribordy G, Poppe A, Allacher A, Maurhart O, Länger T, Peev M and Zeilinger A 2011 Opt. Express 19 10387
[16]Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Y, Lu C Y, Jiang X, Ma X, Zhang Q, Chen T Y and Pan J W 2016 Phys. Rev. X 6 011024
[17]Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[18]Rarity J G, Tapster P R, Gorman P M and Knight P 2002 New J. Phys. 4 82
[19]Nauerth S, Moll F, Rau M, Fuchs C, Horwath J, Frick S and Weinfurter H 2013 Nat. Photon. 7 382
[20]Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q, Liu W Y, Li B, Dai H, Li G B, Lu Q M, Gong Y H, Xu Y, Li S L, Li F Z, Yin Y Y, Jiang Z Q, Li M, Jia J J, Ren G, He D, Zhou Y L, Zhang X X, Wang N, Chang X, Zhu Z C, Liu N L, Chen Y A, Lu C Y, Shu R, Peng C Z, Wang J Y and Pan J W 2017 Science 356 1140
[21]Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu, C Y, Shu R, Peng C Z, Wang J Y and Pan J W 2017 arXiv:1707.00542
[22]Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y and Pan J W 2017 arXiv:1707.00934
[23]Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[24]Wang X B 2005 Phys. Rev. Lett. 94 230503
[25]Bai S, Wang J Y, Qiang J, Zhang L and Wang J J 2014 Opt. Express 22 26462
[26]Pearson D, Barnett S M, Hirota O, Öhberg P, Jeffers J and Andersson E 2004 AIP Conf. Proc. 734 299
[27]Zhang Z, Zhao Q, Razavi M and Ma X 2017 Phys. Rev. A 95 012333
[28]Liao S K, Yong H L, Liu C, Shentu G L, Li D D, Lin J, Dai H, Zhao S Q, Li B, Guan J Y, Chen W, Gong Y H, Li Y, Lin Z H, Pan G S, Pelc, J S, Fejer M M, Zhang W Z, Liu W Y, Yin J, Ren J G, Wang X B, Zhang Q, Peng C Z and Pan J W 2017 Nat. Photon. 11 509
[29]Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[30]Fung C H F, Ma X and Chau H 2010 Phys. Rev. A 81 012318
Related articles from Frontiers Journals
[1] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 090302
[2] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 090302
[3] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 090302
[4] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 090302
[5] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 090302
[6] Min Xiao, Yun-Ru Cao, Xiu-Li Song. Efficient and Secure Authenticated Quantum Dialogue Protocols over Collective-Noise Channels[J]. Chin. Phys. Lett., 2017, 34(3): 090302
[7] Peng Xu, Wan-Su Bao, Hong-Wei Li, Yang Wang, Hai-Ze Bao. Proof of Security of a Semi-Device-Independent Quantum Key Distribution Protocol[J]. Chin. Phys. Lett., 2017, 34(2): 090302
[8] Guang-Zhao Tang, Shi-Hai Sun, Huan Chen, Chun-Yan Li, Lin-Mei Liang. Time-Bin Phase-Encoding Measurement-Device-Independent Quantum Key Distribution with Four Single-Photon Detectors[J]. Chin. Phys. Lett., 2016, 33(12): 090302
[9] Chuan-Qi Liu, Chang-Hua Zhu, Lian-Hui Wang, Lin-Xi Zhang, Chang-Xing Pei. Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source[J]. Chin. Phys. Lett., 2016, 33(10): 090302
[10] Yong-Gang Tan, Qiang Liu. Measurement-Device-Independent Quantum Key Distribution with Two-Way Local Operations and Classical Communications[J]. Chin. Phys. Lett., 2016, 33(09): 090302
[11] Zhi-Hao Liu, Han-Wu Chen, Wen-Jie Liu. Information Leakage Problem in High-Capacity Quantum Secure Communication with Authentication Using Einstein–Podolsky–Rosen Pairs[J]. Chin. Phys. Lett., 2016, 33(07): 090302
[12] Ya-Bin Gu, Wan-Su Bao, Yang Wang, Chun Zhou. Security of the Decoy State Two-Way Quantum Key Distribution with Finite Resources[J]. Chin. Phys. Lett., 2016, 33(04): 090302
[13] Yang Li, Sheng-Kai Liao, Fu-Tian Liang, Qi Shen, Hao Liang, Cheng-Zhi Peng. Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array[J]. Chin. Phys. Lett., 2016, 33(03): 090302
[14] Yan Chang, Chun-Xiang Xu, Shi-Bin Zhang, Hai-Chun Wang, Li-Li Yan, Gui-Hua Han, Yuan-Yuan Huang, Zhi-Wei Sheng. Cryptanalysis and Improvement of the Multi-User QPCE Protocol with Semi-Honest Third Party[J]. Chin. Phys. Lett., 2016, 33(01): 090302
[15] QIN Hua-Wang, DAI Yue-Wei. An Efficient Multiparty Quantum-State Sharing Scheme[J]. Chin. Phys. Lett., 2015, 32(10): 090302
Full text