Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 078501    DOI: 10.1088/0256-307X/34/7/078501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Experimental $I$–$V$ and $C$–$V$ Analysis of Schottky-Barrier Metal-Oxide-Semiconductor Field Effect Transistors with Epitaxial NiSi$_{2}$ Contacts and Dopant Segregation
Yi-Ze Wang1,5, Chang Liu1,2, Jian-Hui Cai1,3, Qiang Liu1,3, Xin-Ke Liu4, Wen-Jie Yu1**, Qing-Tai Zhao2
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2Peter Grünberg Institute 9, JARA-FIT, Forschungszentrum Jülich, Jülich 52425, Germany
3College of Sciences, Shanghai University, Shanghai 200444
4College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060
5University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Yi-Ze Wang, Chang Liu, Jian-Hui Cai et al  2017 Chin. Phys. Lett. 34 078501
Download: PDF(869KB)   PDF(mobile)(864KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an experimental analysis of Schottky-barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) fabricated on ultrathin body silicon-on-insulator substrates with a steep junction by the dopant implantation into the silicide process. The subthreshold swing of such SB-MOSFETs reaches 69 mV/dec. Emphasis is placed on the capacitance-voltage analysis of p-type SB-MOSFETs. According to the measurements of gate-to-source capacitance $C_{\rm gs}$ with respect to $V_{\rm gs}$ at various $V_{\rm ds}$, we find that a maximum occurs at the accumulation regime due to the most imbalanced charge distribution along the channel. At each $C_{\rm gs}$ peak, the difference between $V_{\rm gs}$ and $V_{\rm ds}$ is equal to the Schottky barrier height (SBH) for NiSi$_{2}$ on highly doped silicon, which indicates that the critical condition of channel pinching off is related with SBH for source/drain on channel. The SBH for NiSi$_{2}$ on highly doped silicon can affect the pinch-off voltage and the saturation current of SB-MOSFETs.
Received: 08 March 2017      Published: 23 June 2017
PACS:  85.30.-z (Semiconductor devices)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  61.72.uf (Ge and Si)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61674161, and the Open Project of State Key Laboratory of Functional Materials for Informatics.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/078501       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/078501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi-Ze Wang
Chang Liu
Jian-Hui Cai
Qiang Liu
Xin-Ke Liu
Wen-Jie Yu
Qing-Tai Zhao
[1]Larson J M and Snyder J P 2006 IEEE Trans. Electron Devices 53 1048
[2]Zhu S Y and Li M F 2005 Chin. Phys. Lett. 22 2020
[3]An X et al 2009 Chin. Phys. B 18 4465
[4]Li D Y et al 2007 Chin. Phys. B 16 240
[5]Isogai T et al 2007 Jpn. J. Appl. Phys. 47 3138
[6]Peng Q et al 2015 Acta Phys. Sin. 64 7 (in Chinese)
[7]Liu B B and Cai Q 2013 Chin. Phys. Lett. 30 096801
[8]Zhu S Y et al 2004 IEEE Electron Device Lett. 25 565
[9]Zhang Z, Qiu Z J, Hellstrom P E, Malm G, Olsson J, Lu J, Ostling M and Zhang S L 2008 IEEE Electron Device Lett. 29 125
[10]Woo Y M, Hwang W S and Yoo W J 2015 J. Vac. Sci. Technol. A 33 021307
[11]Bashir F, Loan S A, Rafat M, Alamoud A R M and Abbasi S A 2015 IEEE Trans. Electron Devices 62 3357
[12]Urban C, Emam M, Sandow C, Knoch J, Zhao Q T, Raskin J P and Mantl S 2010 IEEE Electron Device Lett. 31 537
[13]Knoch J, Zhang M, Zhao Q T, Lenk S, Mantl S and Appenzeller J 2005 Appl. Phys. Lett. 87 263505
[14]Zhao Q T, Breuer U, Rije E, Lenk S and Mant S 2005 Appl. Phys. Lett. 86 062108
[15]Yamauchi T, Nishi Y, Tsuchiya Y, Kinoshita A, Koga J and Kato K 2007 IEEE International Electron Devices Meeting (Washington, DC, America 10–12 December 2007) p 963
[16]Huang W, Zhang L C, Gao Y Z and Jin H Y 2005 Acta Phys. Sin. 54 2252 (in Chinese)
[17]Chang J G, Wu C B, Ji X L, Ma H W, Yan F, Shi Y and Zhang R 2012 Chin. Phys. Lett. 29 058501
[18]Shan X N, Huang R, Li Y and Cai Y M 2007 Acta Phys. Sin. 56 4943 (in Chinese)
[19]Knoll L, Zhao Q T, Habicht S, Urban C, Ghyselen B and Mantl S 2010 IEEE Electron Device Lett. 31 350
[20]Knoll L, Zhao Q T, Habicht S, Urban C, Bourdelle K K and Mantl S 2010 Int. Workshop Junction Technol. (Shanghai, China 10–11 May 2010) p 1
[21]Knoll L, Zhao Q T, Luptak R, Trellenkamp S, Bourdelle K K and Mantl S 2012 Solid-State Electron. 71 88
[22]Fujitani H and Asano S 1994 Phys. Rev. B 50 8681
[23]Wang T, Dai Y B, Ouyang S K, Wu J S and Shen H S 2004 Chin. Phys. Lett. 21 2163
[24]Luo J, Gao X D, Qiu Z J, Lu J, Wu D P, Zhao C, Li J F, Chen D P, Hultman L and Zhang S L 2011 IEEE Electron Device Lett. 32 1029
[25]Mi S B, Jia C L, Zhao Q T, Mantl S and Urban K 2009 Acta Mater. 57 232
[26]Knoch J, Zhang M, Appenzeller J and Mantl S 2007 Appl. Phys. A 87 351
[27]An X, Fan C H, Huang R and Zhang X 2009 Chin. Phys. Lett. 26 087304
[28]Knoch J, Zhang M, Feste S and Mantl S 2007 Microelectron. Eng. 84 2563
[29]Zhao Q T, Zhang M, Knoch J and Mantl S 2006 Int. Workshop Junction Technol. (Shanghai, China 15–16 May 2006) p 147
[30]Shima A, Sugii N, Mise N, Hisamoto D, Takeda K I and Torii K 2011 Jpn. J. Apll. Phys. 50 04DC06
[31]Geng L, Magyari-Kope B and Nishi Y 2009 IEEE Electron Device Lett. 30 963
[32]Zhao Q T, Knoll L, Sch(äfer A, Trellenkamp S, Bourdelle K K and Mantl S 2012 Int. Workshop Junction Technol. (Shanghai, China 14–15 May 2012) p 186
[33]Padilla J L, Knoll L, Gamiz F, Zhao Q T, Godoy A and Mantl S 2012 IEEE Trans. Electron Devices 59 1320
[34]Sze S M and Ng K K 2006 Physics of Semiconductor Devices (Hoboken: John Wiley & Sons Inc.) chap 3 p 136
Related articles from Frontiers Journals
[1] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 078501
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 078501
[3] Liang-Sen Feng, Zhe Liu, Ning Zhang, Bin Xue, Jun-Xi Wang, Jin-Min Li. Effect of Nanorod Diameters on Optical Properties of GaN-Based Dual-Color Nanorod Arrays[J]. Chin. Phys. Lett., 2019, 36(2): 078501
[4] Yan-Nan Xu, Jin-Shun Bi, Gao-Bo Xu, Bo Li, Kai Xi, Ming Liu, Hai-Bin Wang, Li Luo. Total Ionization Dose Effects on Charge Storage Capability of Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$-Based Charge Trapping Memory Cell[J]. Chin. Phys. Lett., 2018, 35(11): 078501
[5] Mei Li, Jin-Shun Bi, Yan-Nan Xu, Bo Li, Kai Xi, Hai-Bin Wang, Jing-Liu, Jin-Li, Lan-Long Ji, Li Luo, Ming Liu. Total Ionizing Dose Effects of 55-nm Silicon-Oxide-Nitride-Oxide-Silicon Charge Trapping Memory in Pulse and DC Modes[J]. Chin. Phys. Lett., 2018, 35(7): 078501
[6] Yan-Fei Liu, Dong-Dong Yang, Li-Xin Wang, Qi Li. Directional Analysis of the Chaotic Superlattice around the Equilibrium Point in the Phase Space[J]. Chin. Phys. Lett., 2018, 35(4): 078501
[7] Meng-Ying Zhang, Zhi-Yuan Hu, Zheng-Xuan Zhang, Shuang Fan, Li-Hua Dai, Xiao-Nian Liu, Lei Song. Total Ionizing Dose Response of Different Length Devices in 0.13μm Partially Depleted Silicon-on-Insulator Technology[J]. Chin. Phys. Lett., 2017, 34(8): 078501
[8] Xin Tan, Xing-Ye Zhou, Hong-Yu Guo, Guo-Dong Gu, Yuan-Gang Wang, Xu-Bo Song, Jia-Yun Yin, Yuan-Jie Lv, Zhi-Hong Feng. Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al$_{2}$O$_{3}$ Gate Dielectric[J]. Chin. Phys. Lett., 2016, 33(09): 078501
[9] Xiao-Peng Lv, Hui Wang, Ling-Qiang Meng, Xiao-Fang Wei, Yong-Zhen Chen, Xiang-Bin Kong, Jian-Jun Liu, Jian-Xin Tang, Peng-Fei Wang, Ying Wang. High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter[J]. Chin. Phys. Lett., 2016, 33(08): 078501
[10] Quan-Xi Yan, Shu-Fang Zhang, Xing-Ming Long, Hai-Jun Luo, Fang Wu, Liang Fang, Da-Peng Wei, Mei-Yong Liao. Numerical Simulation on Thermal-Electrical Characteristics and Electrode Patterns of GaN LEDs with Graphene/NiO$_x$ Hybrid Electrode[J]. Chin. Phys. Lett., 2016, 33(07): 078501
[11] Jin-Feng Feng, Chang Liu, Wen-Jie Yu, Ying-Hong Peng. Oxygen Scavenging Effect of LaLuO$_{3}$/TiN Gate Stack in High-Mobility Si/SiGe/SOI Quantum-Well Transistors[J]. Chin. Phys. Lett., 2016, 33(05): 078501
[12] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 078501
[13] HU Sheng-Dong, JIN Jing-Jing, CHEN Yin-Hui, JIANG Yu-Yu, CHENG Kun, ZHOU Jian-Lin, LIU Jiang-Tao, HUANG Rui, YAO Sheng-Jie. A Novel Interface-Gate Structure for SOI Power MOSFET to Reduce Specific On-Resistance[J]. Chin. Phys. Lett., 2015, 32(09): 078501
[14] LIU Li-Fang, PAN Li-Yang, ZHANG Zhi-Gang, XU Jun. Impact of Band-Engineering to Performance of High-k Multilayer Based Charge Trapping Memory[J]. Chin. Phys. Lett., 2015, 32(08): 078501
[15] ZHANG Chun-Wei, LIU Si-Yang, SUN Wei-Feng, ZHOU Lei-Lei, ZHANG Yi, SU Wei, ZHANG Ai-Jun, LIU Yu-Wei, HU Jiu-Li, HE Xiao-Wei. Anomalous Channel Length Dependence of Hot-Carrier-Induced Saturation Drain Current Degradation in n-Type MOSFETs[J]. Chin. Phys. Lett., 2015, 32(08): 078501
Viewed
Full text


Abstract